4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.

Slides:



Advertisements
Similar presentations
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Advertisements

Riemann sums, the definite integral, integral as area
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Quick Review Quick Review Solutions.
The First Fundamental Theorem of Calculus. First Fundamental Theorem Take the Antiderivative. Evaluate the Antiderivative at the Upper Bound. Evaluate.
Riemann Sums and the Definite Integral Lesson 5.3.
The Definite Integral.
Riemann Sums & Definite Integrals Section 5.3. Finding Area with Riemann Sums For convenience, the area of a partition is often divided into subintervals.
The Integral chapter 5 The Indefinite Integral Substitution The Definite Integral As a Sum The Definite Integral As Area The Definite Integral: The Fundamental.
THE DEFINITE INTEGRAL RECTANGULAR APPROXIMATION, RIEMANN SUM, AND INTEGRTION RULES.
Definite Integrals Sec When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width.
Chapter 5 .3 Riemann Sums and Definite Integrals
Georg Friedrich Bernhard Riemann
Introduction to integrals Integral, like limit and derivative, is another important concept in calculus Integral is the inverse of differentiation in some.
First Fundamental Theorem of Calculus Greg Kelly, Hanford High School, Richland, Washington.
State Standard – 16.0a Students use definite integrals in problems involving area. Objective – To be able to use the 2 nd derivative test to find concavity.
Lets take a trip back in time…to geometry. Can you find the area of the following? If so, why?
5.2 Definite Integrals. Subintervals are often denoted by  x because they represent the change in x …but you all know this at least from chemistry class,
Summation Notation Also called sigma notation
5.2 Definite Integrals.
If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation.
Section 5.2: Definite Integrals
1 §12.4 The Definite Integral The student will learn about the area under a curve defining the definite integral.
Learning Objectives for Section 13.4 The Definite Integral
Summation Notation Also called sigma notationAlso called sigma notation (sigma is a Greek letter Σ meaning “sum”) The series can be written.
5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.1 Estimating with Finite Sums Greenfield Village, Michigan.
The Definite Integral.
Time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we.
5.2 Definite Integrals Bernhard Reimann
Dr. Omar Al Jadaan Assistant Professor – Computer Science & Mathematics General Education Department Mathematics.
Distance Traveled Area Under a curve Antiderivatives
5.2 Definite Integrals. When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width.
Calculus Date: 3/7/2014 ID Check Obj: SWBAT connect Differential and Integral Calculus Do Now: pg 307 #37 B #23 HW Requests: SM pg 156; pg 295 #11-17 odds,
Riemann Sums and The Definite Integral. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3.
RIEMANN SUMS AP CALCULUS MS. BATTAGLIA. Find the area under the curve from x = 0 to x = 35. The graph of g consists of two straight lines and a semicircle.
Chapter 6 Integration Section 4 The Definite Integral.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
Riemann Sums and Definite Integration y = 6 y = x ex: Estimate the area under the curve y = x from x = 0 to 3 using 3 subintervals and right endpoints,
5.2 Definite Integrals Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
Riemann Sum. When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle.
4-3: Riemann Sums & Definite Integrals Objectives: Understand the connection between a Riemann Sum and a definite integral Learn properties of definite.
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc. Integration 5 Antiderivatives Substitution Area Definite Integrals Applications.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
4.3 Riemann Sums and Definite Integrals
1. Graph 2. Find the area between the above graph and the x-axis Find the area of each: 7.
The Definite Integral. Area below function in the interval. Divide [0,2] into 4 equal subintervals Left Rectangles.
The Fundamental Theorem of Calculus Area and The Definite Integral OBJECTIVES  Evaluate a definite integral.  Find the area under a curve over a given.
[5-4] Riemann Sums and the Definition of Definite Integral Yiwei Gong Cathy Shin.
Chapter 5 Integrals 5.1 Areas and Distances
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Area and the Definite Integral
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.
Riemann Sums and the Definite Integral
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Definite Integrals Finney Chapter 6.2.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.1 Estimating with Finite Sums
Riemann Sums and Integrals
4.2/4.6 Approximating Area Mt. Shasta, California.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 4.3 Riemann Sums and The Definite Integral
5.1 Estimating with Finite Sums
6.2 Definite Integrals.
6-2 definite integrals.
Areas and Distances In this handout: The Area problem
Presentation transcript:

4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under a curve using technology. ©2007 Roy L. Gover (

Riemann Sum If f is a continuous function, then the left Riemann sum with n equal subdivisions for f over the interval [a, b] is defined to be

When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle is called a subinterval. The entire interval is called the partition. Subintervals do not all have to be the same size.

subinterval partition If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation for the area gets better. if P is a partition of the interval

is called the definite integral of over. If we use subintervals of equal length, then the length of a subinterval is: The definite integral is then given by:

Leibniz introduced a simpler notation for the definite integral: Note that the very small change in x becomes dx.

The Definite Integral If f is a continuous function, the definite integral of f from a to b is defined to be The function f is called the integrand, the numbers a and b are called the limits of integration, and the variable x is called the variable of integration.

Integration Symbol lower limit of integration upper limit of integration integrand variable of integration (dummy variable) It is called a dummy variable because the answer does not depend on the variable chosen.

We have the notation for integration, but we still need to learn how to evaluate the integral.

The Definite Integral As a Total If r(x) is the rate of change of a quantity Q (in units of Q per unit of x), then the total or accumulated change of the quantity as x changes from a to b is given by

time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we draw a graph of the velocity, the distance that the object travels is equal to the area under the line.

The Definite Integral As a Total Ex. If at time t minutes you are traveling at a rate of v(t) feet per minute, then the total distance traveled in feet from minute 2 to minute 10 is given by

If the velocity varies: Distance: ( C=0 since s=0 at t=0 ) After 4 seconds: The distance is still equal to the area under the curve! Notice that the area is a trapezoid.

Area Under a Graph abab Idea: To find the exact area under the graph of a function. Method: Use an infinite number of rectangles of equal width and compute their area with a limit. Width: (n rect.)

Approximating Area Approximate the area under the graph of using n = 4.

Area Under a Graph a b f continuous, nonnegative on [a, b]. The area is

What if: We could split the area under the curve into a lot of thin trapezoids, and each trapezoid would behave like the large one in the previous example. It seems reasonable that the distance will equal the area under the curve.

The area under the curve We can use anti-derivatives to find the area under a curve!

Area

The Definite Integral

k th Rectangle Let’s unpack those last two slides A representative rectangle

Definition A Riemann Sum is the sum of the area of all the rectangles height width

a b Let be the width of the largest rectangle. As approaches 0, the width of all rectangles approach 0.

As the width of all rectangles approach 0, the number of rectangles, n, approaches infinity a b

a b As the width of the rectangles approach 0, the portion of the rectangles above or below the curve (error) approaches 0.

As widths of the rectangles become more narrow, the right end point, left end point & midpoint merge to the same point. a b

Definition If f is defined on the closed interval [ a,b ] and the limit exists, then f is integrable on [ a, b ] and the limit is denoted by:

Definition The Definite Integral from a to b: Lower limit if integration Upper limit of integration Integrand Variable of integration

Properties of the Definite Integral 1: 2: 3: 4: 5: 6:

7:

Area from x=0 to x=1 Example: Find the area under the curve from x = 1 to x = 2. Area from x=0 to x=2 Area under the curve from x = 1 to x = 2.