Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
ILC Positron Source Update Wei Gai Posipol ILC RDR baseline schematic (2007 IHEP meeting) Collimator OMD 150GeV e- ~147GeV e- Target TAP (~125MeV)
Using Realistic Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
3-March-06ILCSC Technical Highights1 ILC Technical Highlights Superconducting RF Main Linac.
Status of Undulator-based Positron Source Baseline Design Leo Jenner, but based largely on a talk given by Jim Clarke to Positron DESY-Zeuthen,
Conventional Source for ILC (300Hz Linac scheme and the cost) Junji Urakawa, KEK LCWS2012 Contents : 0. Short review of 300Hz conventional positron source.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
ILC undulator based RDR e+ source: Yields and Polarizations for QWT capturing and different drive beam energy: Wei Gai, Wanming Liu Argonne National Lab.,
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
Key luminosity issues of the positron source Wei Gai.
Status of target and photon collimator work for polarized e+ LCWS 2014, Belgrade, Serbia 7 th October 2014 Sabine Riemann, Friedrich Staufenbiel, DESY.
20 April 2009 AAP Review Global Design Effort 1 The Positron Source Jim Clarke STFC Daresbury Laboratory.
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Design of Microwave Undulator Cavity
CONVERSION EFFICIENCY AT 250 GeV A.Mikhailichenko Cornell University, LEPP, Ithaca, NY Presented at Positron Source Meeting Daresbury Laboratory,
Undulator Based ILC Positron Source Parameters Wei Gai ANL ALLCPG 2011 March 20, 2011,
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
Positron source beamline lattice Wanming Liu, ANL
ParameterL-bandS-bandX-band Length (m) Aperture 2a (mm) Gradient (Unloaded/Loaded) (MV/m)17/1328/2250/40 Power/structure (MW) Beam.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Status: Cooling of the ILC e+ target by thermal radiation LCWS 2015, Whistler, Canada 3 rd November 2015 Felix Dietrich (DESY), Sabine Riemann (DESY),
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
For Layout of ILC , revised K.Kubo Based on following choices. Positron source: Prepare both conventional and undulator based. Place the.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
ML (BC) Studies update Nikolay Solyak Arun Saini.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
A.Variola Frascati SuperB meeting 1 Injector and positron source scheme. A.Variola, O.Dadoun, F Poirier, R.Chehab, P Lepercq, R.Roux, J.Brossard.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Positron production rate vs incident electron beam energy for a tungsten target
Update on e+ Source Modeling and Simulation
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Positron capture section studies for CLIC Hybrid source - baseline
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Beam-beam effects in eRHIC and MeRHIC
NC Accelerator Structures
ILC RDR baseline schematic (2007 IHEP meeting)
CLIC Undulator Option for Polarised Positrons
ILC RDR baseline schematic (2007 IHEP meeting)
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
CEPC Injector positron source
ILC Baseline Design: Physics with Polarized Positrons
UPDATE OF POSITRON PRODUCTION CODE KONN
CEPC Injector positron source
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1 1 University of Hamburg/DESY 2 DESY, Zeuthen

Components of Positron Source Primary Beam Undulator photons Target Solid wheel (Ti-alloy) Optical Matching Device and Accelerating Cavity Quarter-wave transformer 1.3 GHz cavity embedded into solenoid Acceptance of Damping ring 1% energy spread, ε x +ε y = 0.09 rad m Photon Collimator (optionally) V.Kovalenko POSIPOL’11 RF Cavity Target Photons

Undulator: k=0.92, λ u =11.5 mm Length of undulator: 231 m Target to middle of undulator: 500 m Target: 0.4X 0, Ti6Al4V Target thickness: 14 mm Drive beam energy: 100 GeV to 250 GeV (end of linac) Maximal magnetic field on the axis of QWT: 1T to 2T QUARTER-WAVE CAPTURING V.Kovalenko POSIPOL’11 Low field, 1.0 Tesla on axis, tapers down to 1/2 T. Initial strong solenoid magnet with bucking to cancel B field on target The target will be rotating in a B field of about 0.2T

Max Field Drive beam energy, GeV 1.0 T Captured yield Polarization T Captured yield Polarization T Captured yield Polarization DRIVE BEAM ENERGY DEPENDENTS (no collimation) Yield is calculated as Ne+ captured/Ne- in drive beam V.Kovalenko POSIPOL’11

Collimator radius, mm Captured YieldPolarization 1.0 T1.5 T2.0 T1.0 T1.5 T2.0 T V.Kovalenko POSIPOL’11 Polarization depends on collimator radius for 250 GeV drive beam energy

Drive beam energy ~ 250GeV K=0.92 λ=11.5 mm No collimation Distance between undulator center and QWT ~ 500 m Undulator length ~ 231 m Phase of RF field is optimized for yield Length of QWT ~ 130 mm Maximal magnetic field ~ 1 T Distance to target ~ 150 mm Possible polarization ~ 28% Yield ~ 3 e + /e - Polarization and yield vs distance from QWT to target V.Kovalenko POSIPOL’11

After applying collimator with 2 mm radius: Polarization enhancement of ~ 6 – 7% Yield still fulfils requirement 1.5 e + /e - Polarization and yield vs distance from QWT to target 2 mm collimator radius V.Kovalenko POSIPOL’11

Polarization and yield vs length of QWT (no collimation) Longer QWT gives a higher value of polarization "Captured" Yield(e + /e - ) V.Kovalenko POSIPOL’11

phase change of RF field makes it possible to increase positron polarization up to ; the higher polarization is the lower yield is. phase change of RF field makes it possible to increase positron polarization up to ~ 31%; the higher polarization is the lower yield is. ~ 140° RF field ~ 31% e + polarization ~ 1.5 e + /e - V.Kovalenko POSIPOL’ GeV drive beam vs phase of RF field

For 250 GeV energy beam and without collimation polarization lies in a range of 24-26%. This value of polarization is too small to achieve full physics potential of polarized beams. Increasing distance between target and QWT gives an enhancement of polarization. Collimator with 2 mm aperture radius increases the polarization up to 35% and yield still fulfils requirement 1.5 e + /e - for the source at 250 GeV Longer QWT gives a higher value of polarization. Summary V.Kovalenko POSIPOL’11

Data file with realistic positron distribution in the 6-D phase space taken from PPS-Sim will be used as input file for BMAD. Spin tracking up to DR in PPS-Sim + Bmad is required. Plans V.Kovalenko POSIPOL’11