The Tianshan Radio Experiment for Neutrino Detection Genesis & status of the TREND project Autonomous radio-detection of air showers.

Slides:



Advertisements
Similar presentations
The Tianshan Radio Experiment for Neutrino Detection Genesis & status of the TREND project Autonomous radio-detection of air showers.
Advertisements

TREND DAQ proposal Version II. Trigger module (see C) Trigger inhibit Trigger bypass Threshold value Trigger order FPGA Antenna signal Ch1 Antenna signal.
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope G. Bourlis, N. A. B. Gizani, A. Leisos, A. G. Tsirigotis,
Milky Way over 21CM array (Gu Junhua) The Tianshan Radio Experiment for Neutrino Detection Olivier Martineau-Huynh NAOC G&C lunch talk May 28, 2014.
The GRAND proto A prototype array to evaluate the potential of EAS identification of the radio technique.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
The Giant Radio Array for Neutrino Detection Olivier Martineau FCPPL workshop, April 9, 2014 Milky Way over the 21CM array (Gu Junhua) -Why VHE neutrino.
Sebastian Böser Acoustic test setup at south pole IceCube Collaboration Meeting, Berkeley, March 2005.
TREND simulation step by step Gu Junhua, Olivier Martineau-Huynh & Valentin Niess March 21st 2014.
I.3. The Tianshan Radio Experiment for Neutrino Detection Olivier Martineau-Huynh TREND workshop, April 19, 2013.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
TREND program : establish possibility of automous radio-detection of EAS : 6 antennas to define DAQ and analysis algorithm 2010: 15.
XXI èmes Rencontres de Blois Windows on the Universe Characteristics of high energy cosmic rays observed with CODALEMA : observed with CODALEMA : Evidence.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Andreas Horneffer for the LOPES Collaboration Detecting Radio Pulses from Air Showers with LOPES.
Performance of CRTNT for Sub-EeV Cosmoc Ray Measurement Zhen Cao IHEP, Beijing & Univ. of Utah, SLC Aspen, CO, 04/2005.
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Moon shadow analysis -- Using ARGO experiment Wang Bo, Zhang Yi, Zhang Jianli, Guo Yiqing, Hu Hongbo Apri for NanJing Meeting
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Status and first results of the KASCADE-Grande experiment
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
RASTA: The Radio Air Shower Test Array Enhancing the IceCube Observatory M. A. DuVernois University of Wisconsin IceCube Research Center for the RASTA.
The T IANSHAN R ADIO E XPERIMENT FOR N EUTRINO D ETECTION: an autonomous radio-array for air showers detection Olivier Martineau-Huynh IHEP, 17/02/2011.
Search for neutrinos from gamma-ray bursts with the ANTARES telescope D. Dornic for the ANTARES Collaboration.
Autonomous detection of air showers with the TREND-50 setup Genesis & status of the TREND project Autonomous radio-detection of air showers Jianli Zhang(NAOC,CAS)
CODALEMA A Cosmic Ray Radio Detection Array ICRC 2007, 3-11 July Merida, Mexico CODALEMA A Cosmic Ray Radio Detection Array Didier Lebrun, LPSC Grenoble.
Olivier Martineau, LPNHE Paris – IN2P3 – CNRS VLV T 2015 workshop Rome, September 14, 2015 Proposal for a Giant Radio Array for Neutrino Detection Kumiko.
EAS Time Structures with ARGO-YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento and INFN Lecce, Italy A.K Calabrese Melcarne 1, G.Marsella.
POINT SOURCE ANALYSIS WITH 5-LINE DATA SUMMARY AWG PHONE CALL Juan Pablo Gómez-Gozález 20 th April
Gamma-Ray Bursts with the ANTARES neutrino telescope S. Escoffier CNRS/CPPM, Marseille.
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
RADIODETECTION AND CHARACTERIZATION OF THE COSMIC RAYS AIR SHOWER RADIO EMISSION FOR ENERGIES HIGHER THAN eV WITH THE CODALEMA EXPERIMENT Thomas.
LIGO-G ZSearle LSC Mtg Aug A Coherent Network Burst Analysis Antony Searle (ANU) in collaboration with Shourov Chatterji, Albert Lazzarini,
EAS simulated acceptance skymap Olivier Martineau-Huynh 30/04/2014.
I.2. Radio-detection of extensive air showers Part II Olivier Martineau-Huynh TREND workshop, April 19, 2013.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
The T ianshan R adio E xperiment for N eutrino D etection: Status & Perspectives Olivier Martineau-Huynh for the TREND collaboration NAOC, IHEP & IN2P3.
TREND DAQ BASIC PRINCIPLES … Antennas DAQ ADC Trigger condition: Max > N.σ ??? First level trigger: Nant > 3 antennas ? -By antenna : - 1 data file (Nevent.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
Arnaud Bellétoile SUBATECH NANTES Manchester, 19/07/07 CODALEMA Collaboration Radio-detection of UHECR with the CODALEMA experiment for the CODALEMA collaboration.
The CODALEMA experiment Olivier RAVEL for the CODALEMA collaboration SUBATECH, Nantes ARENA 2010.
32nd International Cosmic Ray Conference August 2011, Beijing China First detection of extensive air showers by the TREND self-triggering radio experiment.
3rd France China Particle Physics Laboratory Workshop 07 April 2010 – 09 April 2010, IPNL, Lyon, France : Update and latest results NAOC.
The GRAND proto A prototype array to evaluate the potential of the radio polarization measurement for EAS identification.
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
5th FCPPL Workshop March 2011, Paris, France Status of the TREND experiment Thomas Saugrin (NAOC)
The GRANDproto35 experiment
GRANDproto Principle & Status
SoLid: Recent Results and Future Prospects
Development of the 21CMA radio-detection array (Xinjiang/China) for the observation of UHE neutrinos showers Didier Charrier1, Pascal Lautridou1, Olivier.
Improved radio data analysis with LOPES Katrin Link, for the LOPES Collaboration #0404, ICRC 2011, Beijing.
Autonomous detection of air showers with the TREND radio-array
Robert Lahmann VLVnT – Toulon – 24-April-2008
GRAND instrumental challenges
The Tianshan Radio Experiment for Neutrino Detection
TREND DAQ meeting IHEP, September 7, 2012.
Performance of the AMANDA-II Detector
Giant Radio Array for Neutrino Detection Proposal for a
Trigger Strategy for LOPESSTAR
Surrounding effects and sensitivity of the CODALEMA experiment
ECRS Radiodetection of cosmic ray extensive air showers : present status of the CODALEMA experiment SUBATECH Nantes Université de Nantes, In2p3,
Hellenic Open University
Presentation transcript:

The Tianshan Radio Experiment for Neutrino Detection Genesis & status of the TREND project Autonomous radio-detection of air showers

The 21cm array East West North South DAQ 4 km 3 km Radiointerferometer for the study of the Epoch of Reionization (Wu XiangPing, NAOC) completed in 2007.

Short waves Ulastai Simulated galactic bckgd Measured bckgd noise The TREND site Ulastai, Tianshan mountains, XinJiang autonomous province (2650m asl) Urumqi Ulastai Beijing

TREND genesis ( ) Q: is the 21CMA set-up usable for CRs detection? – Nantes (April 2008) – Site survey (July 2008) A: yes!... And we get free access to it + technical support from 21CMA.

The TREND « sales strategy » Autonomous EAS radio detection & identification as a key issue in the persepective of a giant radio array for EAS. Radio in R&D phase: need to explore different technological options. TREND as an opportunity: – low elm Ulastai – 21CMA setup to be used for ~free (for France)! – Large radio-setup instrumental to improve our understanding of EAS radio info Long term plans: neutrino telescope

The TREND contributors China: CAS – NAOC: Wu XiangPing, Thomas Saugrin ( ), Zhao Meng (computing), Deng JianRong*, Zhang JianLi**, Gu Junhua** – IHEP: Hu HongBo, Gou QuanBu, Feng Zhaoyang**, Zhang Yi** France: CNRS-IN2P3 – LPNHE: OMH, Patrick Nayman***, Jacques David***, David Martin*** – SUBATECH: Pascal Lautridou ( ), Daniel Ardouin ( ), Didier Charrier (radio antennas) – LPC: Valentin Niess – CC: Fabio Hernandez (computing, ) *: after 2010 **: after 2012 ***: after 2014 Nearly everybody at a small fraction of time on TREND!!!

EAS autonomous radiodetection at the Tianshan Radio Experiment for Neutrino detection (January June 2014)

TREND DAQ pod optical fiber 84dB MHz filter 21CMA acquisition optical fiber64dB MHz filter TREND acquisition Total chain gain: G= Driving concepts: - use existing elements - allow for high trig rate (200Hz/antenna) DAQ room: 8b 200MS/s ADC +CPU (soft trigger) +disk

TREND acquisition chain fiber to the DAQ room (<4km) Coax cable to optical transmitter (<300m) Amplification & filtering

The TREND-50 setup 50 monopolar «Butterfly antennas» deployed in summer-automn 2010 over a total surface ~1.5km². Average antenna step = 150m. Stable operation between January 2011 & June EW orientation in , then NS. TREND-50 ~1.5 km² TREND-15 Ardouin et al., Astropart. Phys 34, 2011

TREND DAQ Analog radio signal transfered through optical fiber to DAQ room. On the fly parrallel digitization at computer level (200MS/s, 8bits). T0 soft trigger if antenna amplitude > Nxσ noise (N in 6-10) Online search for time coincidences between antennas: T1 if at least 4 antennas in causal time frame samples (≈5 μs) written to disk for all antennas in T1. For coincident triggers: offline signal direction reconstruction by triangulation Plane wave treatment: direction (Θ, φ) Point source treatment: position (x, y, z) Nxσ noise TREND DAQ driving concept: DAQ designed to accept large trigger rate (up to 200Hz/antenna). Candidate selection performed through offline treatment.  noise antenna level)

TREND antenna sensitivity Major radio source: thermal emission from the Galactic plane. Visible in Ulastai sky between 15h & 23h LST. Galactic 408MHz TREND antennas clearly exhibit a ~3dB increase in noise level when the Galactic plane is in the sky. Experimental evolution in good agreement with simulated response (following Lamblin et al, ICRC2007). Local sideral time Signal noise level (A. U. ) ~3dB

data: 317 DAQ days analyzed triggers recorded coincidences ~10Hz average coinc rate over whole array (~20 EAS/day expected) 10 ms R data TREND antenna Reconstructed source position TREND trigger performances R3577 Antenna 101 Antenna 106 (700m away) Antenna 112 (1400m away) Antenna 120 (2000m away) T0 rate <100Hz for 90% of the time on all antennas. DAQ efficiency ~ 70%. Large trigger rate variations at all time scales on all antennas: «noise bursts» Noise is correlated between antennas: common (physical) origin. Time delay between consecutive events & point reconstruction points dominantly towards HV sources.

RADIO PERFORMANCES: DIRECTION RECONSTRUCTION Plane track reconstruction : events in 4 minutes - Θ > 60° - Max multiplicity: 40 Total angular resolution <1.5° on the track (and improves with smaller zenithal angle) Point source recons mult ≥ 22 antennas σ = 0.7° Estimated antenna trigger timing error: ±10ns

RADIO PERFORMANCES: CALIBRATION Cross-check with plane track signals Distant radio source (>4km) Signal intensity almost identical on all antennas Good check for amplitude calibration ~15% amplitude resolution (A Cal - )/ Average amplitude Baseline relative calibration: OK if  env >>  elec : then  bline ~K  env => K   bline at time t Antenna   = 0.15

TREND issues «You get what you pay for»: system reliability questionnable – Sudden drops in gain [not solved] – Aging (antennas, amplifiers, optical system, computers…) - Significant maintenance effort required - Reduced detection efficiency - Monitoring of efficiency & absolute calibration (very) challenging [in progress] MHz noise level (dB)

TREND-50 EAS search

EAS identification: principle EAS (0.2mHz) Background events (10Hz) Discriminating parameters Selected EAS candidates Residual background

EAS identification: principle EAS (0.2mHz) Background events (10Hz) Discriminating parameters (optimized with simulated EAS & bckd events) Selected EAS candidates Residual background Simulated EAS Selected simulated EAS

EAS simulation E in [ – ] eV with isotropic sky distrib & random core position Shower dvlpmt (CONEX) elm emission (EVA) Antenna response (NEC2) (if distance<800m) 400 showers/E x 20 core positions x 15 antennas 120’000 voltage computations  240’000h CPU Using DIRAC+VO France-Asia (IHEP, KEK, CC-IN2P3 & LPNHE) Slow!

EAS simulation Simulated antenna signal ( ) 200MS/s (o) V simu x G + noise ( ) using experimental (G, noise) Applying TREND trigger condition with th = 8  noise ( ) Shower considered detected if 5+ antennas triggered. Standard datat treatment & reconstruction.

Discriminating parameters Simulated EAS: 92% pass Spherical wave recons: point source reconstruction of backgrd sources close to array, EAS more distant. R>3000m Data: 66% killed Signal shape: prompt signal for EAS Data: 45% killed Simu: 100% pass

Discriminating parameters Array trigger pattern should be continuous for EAS (E-field linear polarization at 1st order, random for bckgd) Untrigged antennas: hole in trigger pattern Continuous trig zone Data 85% killed Simulated EAS E = eV 85% pass Limited array size + monopolar antennas (+ system unreliability) reduce cut efficiency. Trigged antenna

Environment cuts Bckgd events strongly correlated in time & space Consecutive coincs: reject EAS candidate if 1+ coinc with 4+ antennas in common within 30s. Same direction events: reject EAS candidate if 1+ coinc with 2+ antennas in common and |  |<10° within 10 minutes.

Cut efficiency: from to 465 events Cut% survivalN coincs finalSimu % survival « 50Hz » cut 24% To be determined Pulse duration 56% % Multiplicity > 4 57% Valid direction reconstruction 79% % Radius > 3000m 33% %  < 80° 14% / Trigger pattern/ Extension 15% % Neighbourgs (direction) 3%2600To be determined Neighbourgs 18%465To be determined No cut is related to wave (absolute) arrival direction.

TREND EAS candidates Azimuth angle [deg] Deficit to East & West Excess to North 30° 60° 90° Zenith angle [deg] Normalized EAS candidates zenithal distrib Normalized EAS candidates azimuthal distrib data (EW polar, 317 DAQ days) 465 candidates PRELIMINARY

Simulated skymap For given direction (  20 random x core with min dist to array < 800m. For given shower geometry (  x core ): – check if antennas signals are above threshold (8x  noise ) – If OK for 5+ antennas, tag this geometry as ‘trigged’. For each direction ( , compute ratio N triggered /N simulated (N simulated = 20 in principle) Simu voltage x calib + noise

Simulated sky maps (Zhang Jianli & Gu Junhua) 30° 60° 90° 30° 60° 90° 30° 60° 90° 30° 60° 90° 30° 60° 90° eV eV eV eV eV 20/20 shower detection 0/20 shower detection in progress

Data-Simu comparison dN/d  (Normalized) Zenithal distribution Data Simu Azimuthal distribution dN/d  (Normalized) Event multiplicity SimuData Nb antennas/event Combining & eV simulated data sets. Comparable zenithal, azim and multiplicity distributions (except for very inclined showers: reflexion issues or cuts?) Expected nb of events for threshold = eV: ~6000 in 317 days before analysis cuts. 465 observed… Detection efficiency <10% ?!

ToDo: full MC simulation Simulate EAS events with proper distributions in flux, direction, core positions & energies. Generate expected antenna response to these EAS events at fixed random times. If 5+ triggers, insert these simulated events in experimental data (after experimental EAS candidates have been removed). Process these data through standard analysis chain. Produce simulated maps & compare to data -> Background rejection performances -> Detection threshold -> Detection efficiency

TREND EAS Candidates data (NS polar, 125 DAQ days) 14 candidates -Very low stat BUT distribution differs significantly from EW polar, as expected for EAS. 30° 60° 90° PRELIMINARY Simulated skymap eV

TREND Possible causes for much fewer candidates: – Array maintenance degraded (>30% antennas off) – Bckgd noise significantly higher, affects DAQ duty cycle & acceptance (environment cuts) March 2011 Aug 2012Dec 2012 June 2014 ~15Hz ~100Hz : NS polar 2011: 2012: EW polar

TREND-50 summary Initial goal reached: autonomous radio detection and identification of EAS with limited bckgd contamination (<~ 20%) thanks to low DAQ dead time. Limitations: – Low detection efficiency (set-up layout & stability) – Environment cuts kill detection efficiency when bckgd rises. – Event-by-event discrimination not possible. – Physics output with these data questionnable. Larger array with more stable detection chain would surely perform better…

To Do Perform full acceptance study: insert simulated EAS in real data and run standard analysis - ‘True’ simulated EAS skymap - Detector efficiency estimation TREND-50 antenna Absolute calibration tests Summer 2013 EAS sample analysis (LDF, spectrum, …)… Requires absolute calibration of the amplitude.

TREND early days ( ) 2009: 6 log periodic antennas : reconstruction algorithm development + autonomous trigger proof of principle. 2010: 15 log-periodic antennas + 3 scintillators: independant trigger & analysis of scint data (EAS) & radio data (EAS radio candidates). 400 m 800 m Ardouin et al., Astropart. Phys 34, 2011 First EAS identification with autonomous radio array N ants θ radio θ scints ϕ radio ϕ scints 461±367±5359±23±4 452±149±3195±2191±4 542±136±355±456±5 445±149±312±110±5 756±253±4323±2331±5 Some radio EAS candidates are coincident with scintillator coincidences + direction recons match! Selection of radio EAS candidates with dedicated algorithm Radio data (subset) Reconstruction of 3-fold scintillator coincidences  EAS Scintillator data