1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.

Slides:



Advertisements
Similar presentations
HAPL January 11-13, 2005/ARR 1 Overview of the HAPL IFE Dry Wall Chamber Studies in the US Presented by A. René Raffray UCSD With contributions from John.
Advertisements

M. S. Tillack, J. E. Pulsifer, K. L. Sequoia Grazing-Incidence Metal Mirrors for Laser-IFE Third IAEA Technical Meeting on “Physics and Technology of Inertial.
1 Fusion energy: How to realize it sooner and with less risk. featuring as a case study: The Laser Fusion Test Facility (FTF) John Sethian & Stephen Obenschain.
March 21-22, 2006 HAPL meeting, ORNL 1 Status of Chamber and Blanket Effort A. René Raffray UCSD With contributions from: M. Sawan B. Robson G. Sviatoslavsky.
Government Labs 1.NRL 2.LLNL 3.SNL 4.LANL 5.ORNL 6.PPPL Universities 1.UCSD 2.Wisconsin 3.Georgia Tech 4.UCLA 5.U Rochester 6.PPPL 7.UC Santa Barbara 8.UNC.
Initial Results from ARIES-IFE Study and Plans for the Coming Year Farrokh Najmabadi for the ARIES Team Heavy-ion IFE Meeting July 23-24, 2001 Lawrence.
Welcome to the second “official” Laser IFE workshop Discuss our progress in Laser IFE Address some key issues as a group Oxidation of graphite walls Filling.
Plans For ARIES-IFE Study Farrokh Najmabadi ARIES Conference Call May 17, 2000 Electronic copy: ARIES Web Site:
Background on GIMM studies in HAPL Challenges for a final optic optical requirements environmental threats system integration Design choices Logic pursued.
Chamber Dynamic Response, Laser Driver-Chamber Interface and System Integration for Inertial Fusion Energy Mark Tillack Farrokh Najmabadi Rene Raffray.
November 8-9, Considerations for Small Chambers A. René Raffray UCSD With contributions from M. Sawan (UW), I. Sviatoslavsky (UW) and X. Wang (UCSD)
Nov 5-9, 2006 IAEA meeting, Vienna, Austria 1 Target and Chamber Technologies for Direct-Drive Laser-IFE Presented by A. René Raffray Scientific Investigators:
HAPL May 22-27, 2005 ISFNT-7, Tokyo, Japan 1 Progress Towards Realization of a Laser IFE Solid Wall Chamber A.R. Raffray 1, J. Blanchard 2, J. Latkowski.
Aug. 8-9, 2006 HAPL meeting, GA 1 Advanced Chamber Concept with Magnetic Intervention: - Ion Dump Issues - Status of Blanket Study A. René Raffray UCSD.
Highlights of ARIES-IFE Study Farrokh Najmabadi VLT Conference Call April 18, 2001 Electronic copy: ARIES Web Site:
Impact of Magnetic Diversion on Laser IFE Reactor Design and Performance A. R. Raffray 1, J. Blanchard 2, A. E. Robson 5, D. V. Rose 4, M. Sawan 2, J.
Aug. 8-9, 2006 HAPL meeting, GA 1 Open Discussion on Advanced Armor Concepts Moderated by A. René Raffray UCSD HAPL Meeting GA, La Jolla, CA August 8-9,
1 Radiation Environment at Final Optics of HAPL Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI HAPL GIMM Conference Call.
October 27-28, 2004 HAPL meeting, PPPL 1 Overview of the Components of an IFE Chamber and a Summary of our R&D to Develop Them Presented by: A. René Raffray.
 Analyze & assess integrated and self-consistent IFE chamber concepts  Understand trade-offs and identify design windows for promising concepts. The.
Welcome to the TITAN workshop on MFE/IFE common research M. S. Tillack February 2009.
1 Introduction A plan to develop electrical power with Laser Fusion in 35 years less than John Sethian (NRL) Steve Obenschain (NRL), Camille Bibeau (LLNL),
The High Average Power Laser Program in DOE/DP Coordinated, focussed, multi-lab effort to develop the science and technology for Laser Fusion Energy Coordinated,
University of Wisconsin-Madison ,507 Students –28,677 undergraduate students –12,830 graduate & professional students $1.7 B annual budget 2,060.
HAPL WORKSHOP Chamber Gas Density Requirements for Ion Stopping Presented by D. A. Haynes, Jr. for the staff of the Fusion Technology Institute.
The High Average Power Laser Program Coordinated, focussed, multi-lab effort to develop a rep-rate laser facility for Inertial Fusion Energy and DP needs.
October 27-28, 2004 HAPL meeting, PPPL 1 Overview of the Components of an IFE Chamber and a Summary of our R&D to Develop Them Presented by: A. René Raffray.
A Plan to Develop Dry Wall Chambers for Inertial Fusion Energy with Lasers Page 1 of 46 DRAFT.
1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
Plan to Develop A First Wall Concept for Laser IFE.
ISTP (and other…) Update Stefan Gerhardt NSTX-U Monday Physics Meeting Feb. 20, 2015 B318 NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima.
Beam alignment and incorporation into optical design
1 1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
The Plan to Develop Laser Fusion Energy John Sethian Naval Research Laboratory July 19, 2002.
Fusion Magic? “Any sufficiently advanced technology is indistinguishable from magic. Radical, transformative technologies typically appear ‘impossible’
The High Average Power Laser (HAPL) Program We are developing Fusion Energy with lasers, based primarily on direct drive targets and dry wall chambers.
John Sethian Naval Research Laboratory June 20, 2000 A Vision for Direct Drive Laser IFE: NS A vision for Laser Direct Drive Fusion Energy.
Materials Studies on Z (x-rays) and RHEPP (ions) C.L. Olson, T.J.Tanaka, T.J. Renk, G.A.Rochau, M.A. Ulrickson Sandia National Laboratories, Albuquerque,
1 Neutronics Assessment of Self-Cooled Li Blanket Concept Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
Welcome to the eighth HAPL meeting Courtesy, Mark Tillack, UCSD.
Update on Roughening Work Jake Blanchard HAPL MWG Fusion Technology Institute University of Wisconsin e-meeting – July 2003.
1 Neutronics Parameters for the Reference HAPL Chamber Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
WELCOME Fifth Laser IFE (HAPL) Program Workshop Naval Research Laboratory Dec 5 and 6, 2002.
M. S. Tillack Final Optic Research – Progress and Plans HAPL Project Meeting, PPPL October 2004 Z. Dragojlovic, F. Hegeler, E. Hsieh, J. Mar, F.
February 5-6, 2004 HAPL meeting, G.Tech. 1 Chamber Tasks Coordination Presented by A. René Raffray UCSD With contributions from J. Blanchard and the HAPL.
1 1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
Temperature Response and Ion Deposition in the 1 mm Tungsten Armor Layer for the 10.5 m HAPL Target Chamber T.A. Heltemes, D.R. Boris and M. Fatenejad,
1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
Mark Tillack, John Pulsifer, Kevin Sequoia, Akachi Iroezi, Joel Hollingsworth Final Optic Fabrication, Testing and System Integration HAPL Project Meeting.
NSTX NSTX Team Meeting –Masa Ono August 15, 2014 NSTX-U Team Meeting August 15, 2014 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
350 MJ Target Thermal Response and Ion Implantation in 1 mm thick silicon carbide armor for 10.5 m HAPL Chamber T.A. Heltemes and G.A. Moses Fusion Technology.
M. S. Tillack, J. E. Pulsifer, K. Sequoia Final Optic Research – Progress and Plans HAPL Project Meeting, Georgia Tech 5–6 February 2004.
1 Radiation Environment at Final Optics of HAPL Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI HAPL Meeting ORNL March.
1 1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
Virtual Office of Inertial Fusion Energy Welcome to the High Average Power Laser Technical Workshop Argonne Nat’l Lab - 1 Dept. of Energy - 1 Fusion Power.
Jan 2016 Solar Lunar Data.
Welcome to the sixth HAPL meeting
Electricity Cost and Use – FY 2016 and FY 2017
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
First Wall Response to the 400MJ NRL Target
Presentation transcript:

1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun 2004:UCLA 10. Oct 2004:PPPL 11. Mar 2005:NRL 12. Jun 2005:LLNL 13. Nov 2005: LLE 14. Mar 2006:ORNL 3, ,2,5,11 Welcome to the 14 th HAPL meeting Concept: Still courtesy of Mark Tillack, UCSD

The "business model" for the HAPL program: ♦ Integrate Science & Technology ♦ Multi-institutional /Multi discipline program ♦ Ultimate goal: an attractive electric power plant Universities 1.UCSD 2.Wisconsin 3.Georgia Tech 4.UCLA 5.U Rochester, LLE 6.UC Santa Barbara 7.UC Berkeley 8.UNC 9.Penn State Electro-optics Government Labs 1.NRL 2.LLNL 3.SNL 4.LANL 5.ORNL 6.PPPL Industry 1.General Atomics 2.Titan/PSD 3.Schafer Corp 4.SAIC 5.Commonwealth Tech 6.Coherent 7.Onyx 8.DEI 9.Voss Scientific 10.Northrup 11.Ultramet, Inc 12.Plasma Processes, Inc 13.PLEX Corporation 14.FTF Corporation 15.Research Scientific Inst 16.Optiswitch Technology HAPL Meeting #13, Rochester, LLE Nov 2005

Rene compiled LJ Perkins threat spectra for the baseline (350 MJ) target...and put it in a useful format (Excel spreadsheet): L.J. Perkins (LLNL) 1D calculation based on initial NRL design: LASER:2.459 MJ YIELD:364.7 MJ GAIN:148.3 Rene Bertie

We are adding a new capability to the HAPL program: An electron beam system that better simulates the thermo-mechanical threat to the IFE first wall Depth (microns) Energy deposition/micron (J/cm 2 -  m) Calculations courtesy of: ion deposition: J. Blanchard electron depo: F. Hegeler Real thing (Spectrum of Ions): 5.67 J/cm 2  sec 70 kV, 4  P electrons: 4.20 J/cm 2  sec System specs: 1 cm 2, 100 Hz, > 10 7 shots Will be placed at Oak Ridge

We must maintain the proper balance between demonstrating the front runner technology, and allowing room for innovation & invention Target Physics: Sub MJ targets Magnetic Intervention: 1979 Bob Pechacek's NRL Cusp Experiment Final Optics:Revisiting Dielectric Mirrors and Transmissive optics Something New: tritium issues revisit

Workshop Agenda Tuesday Lasers Poster Break Target Physics Chamber Physics & Engineering Group Photo Lunch Chamber Physics & Engineering-2 Poster Break Target Fabrication Poster Break Target Injection &Engagement Tour of ORNL Facilities High Temp materials Lab Infrared Processing Facility Optional (no host) Dinner Wednesday Final Optics Poster Break Chamber Blankets, Neutronics, tritium Economics 1 st Wall Armor Thermo-mechanics Lunch 1 st Wall Armor He Retention, Bonding Materials Meeting Wrap up