Electric Fields Due to Continuous Charge Distributions

Slides:



Advertisements
Similar presentations
Continuous Charge Distributions
Advertisements

Chapter 23 Electric Fields.
Electric Charges and Electric Fields
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 16: Electric Forces and Fields.
Sinai University Faculty of Engineering Science Department of Basic Science 4/15/2017 W1.
CHAPTER 23 : ELECTRIC FIELDS
Chapter 23 Electric Fields.
Electric Fields The Electric Field Electric Fields Lines Field due to a Point Charge Field due to an Electric Dipole Field due to a Line of Charge Field.
Chapter 23 Gauss’ Law.
Electric Charge, Force, and Field
Chapter 22 Electric Potential.
Physics for Scientists and Engineers II, Summer Semester 2009 Lecture 2: May 20 th 2009 Physics for Scientists and Engineers II.
Chapter 23 Summer 1996, Near the University of Arizona Chapter 23 Electric Fields.
Physics 121: Electricity & Magnetism – Lecture 3 Electric Field
Chapter 23 Electric Fields.
Electric Forces and Electric Fields
Chapter 21 & 22 Electric Charge Coulomb’s Law This force of repulsion or attraction due to the charge properties of objects is called an electrostatic.
Scalar field: Temperatures The shown temperatures are samples of the field
Chapter 22 Gauss’s Law. Charles Allison © Motion of a Charged Particle in an Electric Field The force on an object of charge q in an electric.
ELECTRICITY & MAGNETISM (Fall 2011) LECTURE # 4 BY MOEEN GHIYAS.
Chapter 22: Electric Fields
Bright Storm on Electric Field (Start to minute 6:18)
Chapter 23 Electric Charge and Electric Fields What is a field? Why have them? What causes fields? Field TypeCaused By gravitymass electriccharge magneticmoving.
Chapter 23 Electric Fields.
Lecture 3 Electric Field Electric Field Lines Conductors in Electrostatic Equilibrium Millikan’s Oil-Drop Experiment Van de Graff Generator Electric Flux.
Chapter 23 Electric Fields. Intro The electromagnetic force between particles is one of the four fundamental forces of nature. We will begin by discussing.
Electric Charge and Electric Field
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
1 Electric Field – Continuous Charge Distribution As the average separation between source charges is smaller than the distance between the charges and.
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lecture prepared by Richard Wolfson Slide Electric.
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism (Electrostatics) a. Electric Charge, Electric Field & Gauss’ Law.
Physics for Bioscience (Part II) Electricity Magnetism Waves Sound Optics by Dr. Chittakorn polyon Department of Physics, Faculty of Science,
My Chapter 16 Lecture Outline.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Electric Field Physics Overview Properties of Electric Charges Charging Objects by Induction Coulomb’s Law The Electric Field Electric Field Lines.
General Physics II, Lec 3, By/ T.A. Eleyan 1 Lecture 3 The Electric Field.
Lecture 5 R 2R2R Yesterday we introduced electric field lines Today we will cover some extra topics on Electric Fields before going on to Electric Flux.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Halliday/Resnick/Walker Fundamentals of Physics
Chapter 21 Electric Charge and Electric Field HW #4: Chapter 21: Pb.21,Pb.38, Pb.40, Pb.52, Pb.59, Pb.80 Due Friday, Feb 20.
Physics 213 General Physics
Electric Field-Intro Electric force is a field force. Field forces can act through space, i.e. requires no physical contact. Faraday developed the concept.
Lecture3 Dr. lobna Mohamed Abou El-magd
ELECTROMAGNETIS M LECTURE#04 Instructor: Muhammad Mateen Yaqoob.
Electromagnetism Lecture#3
Electric Field.
Electric Forces and Electric Fields
Electric Potential.
Conductor, insulator and ground. Force between two point charges:
Electric Fields Montwood High School AP Physics C R. Casao.
Chapter 25 Electric Potential. Electrical Potential Energy The electrostatic force is a conservative force, thus It is possible to define an electrical.
Electricity and Magnetism
Chapter 15 Electric Forces and Electric Fields. First Observations – Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber,
Copyright © 2009 Pearson Education, Inc. Supplemental Lecture Taken from Ch. 21 in the book by Giancoli Section & Example Numbers refer to that book.
Electrostatics Fields Refresher Electrical Potential Potential Difference Potential Blame it on the old folks.
Chapter 22 Electric Fields The Electric Field: The Electric Field is a vector field. The electric field, E, consists of a distribution of vectors,
Chapter 23 Electric Fields.
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Electric Fields… …and Gauss’ Law Chapter 18 The Concept of a Field A field is defined as a property of space in which a material object experiences a.
Electric Forces and Fields AP Physics C. Electrostatic Forces (F) (measured in Newtons) q1q1 q2q2 k = 9 x 10 9 N*m 2 /C 2 This is known as “Coulomb’s.
Chapter 25 Electric Potential.
Electric Fields Due to Continuous Charge Distributions
23.6 Electric Field Line 23.7 Motion of Charged Particles in a Uniform Electric Field Nadiah Alenazi.
Electrical Field 15.4 Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object.
AP Physics C: Electricity & Magnetism – Charges & Electric Field
Chapter 21 Gauss’s Law.
Chapter 23 Electric Fields.
to a positively charged glass rod
Chapter 21, Electric Charge, and electric Field
Presentation transcript:

Electric Fields Due to Continuous Charge Distributions

Continuous Charge Distributions The distances between charges in a group of charges may be much smaller than the distance between the group and a point of interest. In this situation, the system of charges can be modeled as continuous. The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume.

Continuous Charge Distributions Procedure Divide the charge distribution into small elements, each containing a small charge Δq. Calculate the electric field due to one of these elements at point P. Evaluate the total field by summing the contributions of all of the charge elements.

For the individual charge elements: Because the charge distribution is continuous:

ρ ≡ (Q/V) (Units are C/m3) Charge Densities Volume Charge Density When a charge Q is distributed evenly throughout a volume V, the Volume Charge Density is defined as: ρ ≡ (Q/V) (Units are C/m3)

Charge Densities Volume Charge Density ρ ≡ (Q/V) (Units are C/m3) When a charge Q is distributed evenly throughout a volume V, the Volume Charge Density is defined as: ρ ≡ (Q/V) (Units are C/m3) Surface Charge Density When a charge Q is distributed evenly over a surface area A, the Surface Charge Density is defined as: σ ≡ Q/A (Units are C/m2)

Charge Densities Volume Charge Density ρ ≡ (Q/V) (Units are C/m3) When a charge Q is distributed evenly throughout a volume V, the Volume Charge Density is defined as: ρ ≡ (Q/V) (Units are C/m3) Surface Charge Density When a charge Q is distributed evenly over a surface area A, the Surface Charge Density is defined as: σ ≡ Q/A (Units are C/m2) Linear Charge Density When a charge Q is distributed along a line ℓ , the Line Charge Density is defined as: λ ≡ (Q/ℓ) (Units are C/m)

Electric Field Due to a Charged Rod Example 23.7: Electric Field Due to a Charged Rod Figure 23.15 (Example 23.6) The electric field at P due to a uniformly charged rod lying along the x axis.

Electric Field Due to a Charged Rod Example 23.7: Electric Field Due to a Charged Rod dq = dx, so dE = ke[dq/(x2)] = ke[(dx)/(x2)] And E = ke∫[(dx)/(x2)] (limits x = a to x = l) E = ke[(1/a) – 1/(a + l)] Figure 23.15 (Example 23.6) The electric field at P due to a uniformly charged rod lying along the x axis.

Electric Field of a Uniform Ring of Charge Example 23.8: Electric Field of a Uniform Ring of Charge Figure 23.16 (Example 23.7) A uniformly charged ring of radius a. (a) The field at P on the x axis due to an element of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Figure 23.16 (Example 23.7) A uniformly charged ring of radius a. (a) The field at P on the x axis due to an element of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Electric Field of a Uniformly Charged Disk Example 23.9: Electric Field of a Uniformly Charged Disk The disk has radius R & uniform charge density σ. Choose dq as a ring of radius r. The ring has a surface area 2πr dr. Integrate to find the total field. Figure 23.16 (Example 23.7) A uniformly charged ring of radius a. (a) The field at P on the x axis due to an element of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Electric Field Lines Field lines give a means of representing the electric field pictorially. The electric field vector is tangent to the electric field line at each point. The line has a direction that is the same as that of the electric field vector. The number of lines per unit area through a surface perpendicular to the lines is proportional to the magnitude of the electric field in that region. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines, General In the figure, the density of lines through surface A is greater than through surface B. The magnitude of the electric field is greater on surface A than B. The lines at different locations point in different directions. This indicates that the field is nonuniform. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines: Positive Point Charge The field lines radiate outward in all directions. In three dimensions, the distribution is spherical. The field lines are Directed away from a Positive Source Charge. So, a positive test charge would be repelled away from the positive source charge. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines: Negative Point Charge The field lines radiate inward in all directions. In three dimensions, the distribution is spherical. The field lines are Directed Towards a Negative Source Charge. So, a positive test charge would be attracted to the negative source charge. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines – Rules for Drawing No two field lines can cross. The lines must begin on a positive charge & terminate on a negative charge. In the case of an excess of one type of charge, some lines will begin or end infinitely far away. The number of lines drawn leaving a positive charge or approaching a negative charge is proportional to the magnitude of the charge. No two field lines can cross. Remember the field lines are not material objects, they are a pictorial representation used to qualitatively describe the electric field. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines – Electric Dipole The charges are equal & opposite. The number of field lines leaving the positive charge equals the number of lines terminating on the negative charge. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines – Like Charges The charges are equal & positive. The same number of lines leave each charge since they are equal in magnitude. At a great distance away, the field is approximately equal to that of a single charge of 2q. Since there are no negative charges available, the field lines end infinitely far away. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Electric Field Lines, Unequal Charges The positive charge is twice the magnitude of the negative charge. Two lines leave the positive charge for each line that terminates on the At a great distance away, the field would be approximately the same as that due to a single charge of +q. Figure 23.17 (Example 23.8) A uniformly charged disk of radius R. The electric field at an axial point P is directed along the central axis, perpendicular to the plane of the disk.

Motion of Charged Particles When a charged particle is placed in an electric field, it experiences an electric force. If this is the only force on the particle, it must be the net force. The net force will cause the particle to accelerate according to Newton’s 2nd Law.

F = ma = qE Motion of a Charged Particle in an Electric Field F = qE From Coulomb’s Law, the force on an object of charge q in an electric field E is: F = qE So, if the mass & charge of a particle are known, its motion in an electric field can be calculated by Combining Coulomb’s Law with Newton’s 2nd Law: F = ma = qE

a = q(E/m) If the particle has a positive charge, its If the field E is uniform, then the acceleration is constant. So, to describe the motion of a particle in the field, the kinematic equations from Physics I can be used, with the acceleration a = q(E/m) If the particle has a positive charge, its acceleration is in the direction of the field. If the particle has a negative charge, its acceleration is in the direction opposite the electric field.

Example 23.11: Electron in a Uniform E Field An electron is projected horizontally into a uniform electric field E (Figure). It undergoes a downward acceleration. It is a negative charge, so the acceleration is opposite to the direction of the field. Its motion follows a parabolic path while it is between the plates. Solving this problem is identical mathematically to the problem of projectile motion in Physics I!!!