Help Session Ch-23.

Slides:



Advertisements
Similar presentations
QUICK QUIZ 24.1 (For the end of section 24.1)
Advertisements

Lecture 9 Review.
Study Guide Chapter 19 Sections 9 & 10
Chapter 22: The Electric Field II: Continuous Charge Distributions
Applications of Gauss’s Law
Electric Potential AP Physics Montwood High School R. Casao.
Lecture 6 Problems.
Continuous Charge Distributions
Conductors in Electrostatic Equilibrium
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
© 2012 Pearson Education, Inc. A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2)
C. less, but not zero. D. zero.
Karl Friedrich Gauss ( ) – German mathematician Ch 24 – Gauss’s Law.
Review 2.
Chapter 23 Gauss’ Law.
Gauss’ Law Gaussian Surface Flux Gauss’ Law Charged Isolated Conductor Applying Gauss’ Law Cylindrical Symmetry Planar Symmetry Spherical Symmetry pps.
A Charged, Thin Sheet of Insulating Material
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
1/22/07184 Lecture 81 PHY 184 Spring 2007 Lecture 8 Title: Calculations on Electrostatics.
Slide 1 Electric Field Lines 10/29/08. Slide 2Fig 25-21, p.778 Field lines at a conductor.
General Physics 2, Lec 5, By/ T.A. Eleyan 1 Additional Questions (Gauss’s Law)
Norah Ali Al-moneef King Saud university
Chapter 23 Gauss’s Law.
General Physics 2, Lec 6, By/ T.A. Eleyan
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
 Since a cube has 6 identical sides and the point charge is at the center problem1 - Charge in a Cube Q Q=3.76 nC is at the center of a cube. What is.
Physics 2102 Lecture 9 FIRST MIDTERM REVIEW Physics 2102
From Chapter 23 – Coulomb’s Law
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
A b c Gauss' Law.
Chapter 23 Gauss’ Law Key contents Electric flux Gauss’ law and Coulomb’s law Applications of Gauss’ law.
General Physics 2, Lec 5, By/ T.A. Eleyan 1 Additional Questions (Gauss’s Law)
Physics.
III.A 3, Gauss’ Law.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Q21. Gauss’ Law. 1.A particle with charge 5.0-  C is placed at the corner of a cube. The total electric flux in N  m 2 /C through all sides of the cube.
Electric Charge and Electric Field
Electricity and Magnetism Review 1: Units 1-6
Electric Field Models The electric field of a point charge q at the origin, r = 0, is where є 0 = 8.85 × 10 –12 C 2 /N m 2 is the permittivity constant.
Physics 2112 Unit 4: Gauss’ Law
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
1 CHAPTER-23 Gauss’ Law. 2 CHAPTER-23 Gauss’ Law Topics to be covered  The flux (symbol Φ ) of the electric field  Gauss’ law  Application of Gauss’
Halliday/Resnick/Walker Fundamentals of Physics
Chapter 21 Electric Charge and Electric Field HW #4: Chapter 21: Pb.21,Pb.38, Pb.40, Pb.52, Pb.59, Pb.80 Due Friday, Feb 20.
Application of Gauss’ Law to calculate Electric field:
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
今日課程內容 CH21 電荷與電場 電場 電偶極 CH22 高斯定律 CH23 電位.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses.
Gauss’ Law Chapter 23 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
د/ بديع عبدالحليم د/ بديع عبدالحليم
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Physics 2102 Gauss’ law Physics 2102 Gabriela González Carl Friedrich Gauss
Ch23

Physics 2113 Lecture 13: WED 23 SEP EXAM I: REVIEW Physics 2113 Jonathan Dowling.
Physics 212 Lecture 4, Slide 1 Physics 212 Lecture 4 Today's Concepts: Conductors + Using Gauss’ Law Applied to Determine E field in cases of high symmetry.
Halliday/Resnick/Walker Fundamentals of Physics
University Physics: Waves and Electricity Ch23. Finding the Electric Field – II Lecture 8 Dr.-Ing. Erwin Sitompul
Two charges of 16 pC and -65 pC are inside a cube with sides that are of 0.17 m length. Determine the net electric flux through the surface of the cube.
3/21/20161 ELECTRICITY AND MAGNETISM Phy 220 Chapter2: Gauss’s Law.
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
24.2 Gauss’s Law.
Physics 2113 Jonathan Dowling Physics 2113 Lecture 13 EXAM I: REVIEW.
3. A 40.0-cm-diameter loop is rotated in a uniform electric field until the position of maximum electric flux is found. The flux in this position is.
problem1 - Charge in a Cube
Norah Ali Al-moneef King Saud university
CHAPTER-23 Gauss’ Law.
Presentation transcript:

Help Session Ch-23

071 Q5. When a piece of paper is held with its face perpendicular to a uniform electric field the flux through it is 30.0 N·m /C. When the paper is turned at certain angle with respect to the field the flux through it is 24.6 N·m2/C. What is the angle? (Ans: 35o) Q6. An infinitely long uniformly charged rod is coaxial with an infinitely long uniformly charged cylindrical shell of radius 5.0 cm. The linear density of the rod is + 15 × 10-9 C/m and that of the cylindrical shell is – 20 × 10-9 C/m. What is the magnitude of the electric field at a distance of 10 cm from the axis? (Ans: 900 N/C) Q7. A particle, of mass 1.0 g and charge 1.0 × 10-6 C, is held stationary between two parallel non-conducting sheets that carry equal but opposite surface charge densities. What is the magnitude of the surface charge density? (Ans: 8.7 × 10-8 C) Q8. An insulating spherical shell of radius 15 cm has a total charge of 10 μC uniformly distributed on its surface. Calculate the electric field intensity at a distance of 14 cm from the center of the shell. (Ans: 0)

T062 Q5. A uniform electric field E= ai-bj intersects a surface of area A. The flux through the area is: (Ans: Zero if the surface lies in the xy plane) Q6. A point charge of 12 μC is placed at the center of a spherical shell of radius 12 cm. Find the ratio of the total electric flux through the entire surface of the shell to that of a concentric spherical surface of radius 6.0 cm. (Ans:1) Q7. An insulating sphere of radius R = 10 mm has a uniform charge density ρ = 6.00 x 10-3 C/m3. Calculate the electric flux through a concentric spherical surface with radius 5.00 mm. (Ans: 355 N.m2/C) Q8. The electric field, at a distance of 40 cm, from a very long uniform wire of charge is 840 N/C. How much charge is contained in a 2.0 cm long of the wire? (Ans: 0.37 nC)

T061 Q#6. When a piece of paper is held with its face perpendicular to a uniform electric field the flux through it is 25.0 N·m2/C. When the paper is turned 25.0o with respect to the field the flux through it is: (Ans: 22.7 N·m2/C ) Q#7. Charge Q is distributed uniformly throughout a spherical insulating shell. The net electric flux in N·m2/C through the inner surface of the shell is: (Ans: 0 ) Q#8. A long wire, of linear charge density λl , runs along the cylindrical axis, of a cylindrical conducting shell, which carries a net linear charge density of λc. The charge per unit length on the inner and outer surfaces of the shell, respectively are: [Note: linear charge density charge per unit length] ≡ (Ans: −λl and λc + λl ) Q#9. Two large insulating parallel plates carry uniformly-distributed surface charge densities of equal magnitude, one positive and the other negative, as shown in Fig. 1. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest. (Ans: 1, 4, and 5 tie, then 2 and 3 tie )