FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches.

Slides:



Advertisements
Similar presentations
Prospects for X(3872) Detection at Panda Jens Sören Lange, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Stephanie Künze, Yutie Liang, David Münchow, Björn.
Advertisements

News on PXD Readout Issues Sören Lange, Universität Gießen, Belle II DAQ/TRG, KEK, 七夕, 平成 21.
Computing EVO meeting, January 15 th 2013 Status of the Tracking Code Gianluigi Boca, Pavia University.
1 Vertex fitting Zeus student seminar May 9, 2003 Erik Maddox NIKHEF/UvA.
An ATCA and FPGA-Based Data Processing Unit for PANDA Experiment H.XU, Z.-A. LIU,Q.WANG, D.JIN, Inst. High Energy Physics, Beijing, W. Kühn, J. Lang, S.
MC Study on B°  J/  ° With J/      °     Jianchun Wang Syracuse University BTeV meeting 03/04/01.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
L3 Muon Trigger at D0 Status Report Thomas Hebbeker for Martin Wegner, RWTH Aachen, April 2002 The D0 muon system Functionality of the L3 muon trigger.
The High-Level Trigger of the ALICE Experiment Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
MdcPatRec Tracking Status Zhang Yao, Zhang Xueyao Shandong University.
NA62 Trigger Algorithm Trigger and DAQ meeting, 8th September 2011 Cristiano Santoni Mauro Piccini (INFN – Sezione di Perugia) NA62 collaboration meeting,
Simulation and Analysis of VTX03 and Upgrades to LASS Ryan Page.
LHCb VErtex LOcator & Displaced Vertex Trigger
Mitglied der Helmholtz-Gemeinschaft Calibration of the COSY-TOF STT & pp Elastic Analysis Sedigheh Jowzaee IKP Group Talk 11 July 2013.
Tracking, PID and primary vertex reconstruction in the ITS Elisabetta Crescio-INFN Torino.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
W-DHCAL Analysis Overview José Repond Argonne National Laboratory.
First Results from the NA62 Straw Spectrometer E uropean P hysical S ociety 2015, Wien Vito Palladino - CERN On Behalf of NA62 Collaboration.
Modeling PANDA TDAQ system Jacek Otwinowski Krzysztof Korcyl Radoslaw Trebacz Jagiellonian University - Krakow.
Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.
J.RItman PANDA Collab. Meeting, May 2003 Status of the PANDA Simulations Event Generator UrQMD p A MVD Resolution Time of Flight Estimates of Data Rates.
Roberto Barbera (Alberto Pulvirenti) University of Catania and INFN ACAT 2003 – Tsukuba – Combined tracking in the ALICE detector.
1 DT Local Reconstruction on CRAFT data Plots for approval CMS- Run meeting, 26/6/09 U.Gasparini, INFN & Univ.Padova on behalf of DT community [ n.b.:
XLV INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS Tiago Pérez II Physikalisches Institut For the PANDA collaboration FPGA Compute node for the PANDA.
LCWS11 – Tracking Performance at CLIC_ILD/SiD Michael Hauschild - CERN, 27-Sep-2011, page 1 Tracking Performance in CLIC_ILD and CLIC_SiD e + e –  H +
Current Status of MDC Track Reconstruction MdcPatRec Zhang Yao, Zhang Xueyao
Giuseppe Ruggiero CERN Straw Chamber WG meeting 07/02/2011 Spectrometer Reconstruction: Pattern recognition and Efficiency 07/02/ G.Ruggiero - Spectrometer.
1 MDC Track Finding at BESIII Zang Shilei BES Annual Meeting (Jun 1, 2005) ______________________________________ -Outline- 
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
BESIII offline software group Status of BESIII Event Reconstruction System.
Outline Description of the experimental setup Aim of this work TDC spectra analysis Tracking method steps Autocalibration Single tube resolution Summary.
Object-Oriented Track Reconstruction in the PHENIX Detector at RHIC Outline The PHENIX Detector Tracking in PHENIX Overview Algorithms Object-Oriented.
Tracking software of the BESIII drift chamber Linghui WU For the BESIII MDC software group.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck, Milan.
Nikhef Scientific Meeting 2000Onne Peters D0 Muon Spectrometer December 14-15, Amsterdam Onne Peters Nikhef Jamboree 2000.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Jifeng Hu, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck,
GSI, December 7 th, 2009 Status of the Pattern Recognition with the STT system alone. Gianluigi Boca 1.
FPGA Helix Tracking Algorithm -- VHDL implementation Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn.
14/06/2010 Stefano Spataro Status of LHE Tracking and Particle Identification Status of LHE Tracking and Particle Identification Stefano Spataro III Panda.
Review and Perspective of Muon Studies Marco Destefanis Università degli Studi di Torino PANDA Collaboration Meeting GSI (Germany) September 5-9, 2011.
Vienna, PANDA meeting, December 1 st, 2015 Universita’ di Pavia Italy Track efficiency and contamination in Road Finding Pattern Recognition when the interaction.
Iterative local  2 alignment algorithm for the ATLAS Pixel detector Tobias Göttfert IMPRS young scientists workshop 17 th July 2006.
Torino, June 15 th, 2009 Status of the Pattern Recognition with the Hough transform and the STT system alone. Gianluigi Boca 1.
Frascati September 8 th, 2014 Universita’ di Pavia Italy Improvements in the offline Pattern Recognition in the 20 MHz interaction rate environment Gianluigi.
FPGA Helix Tracking Algorithm with STT
Susanna Costanza - Pavia Group PANDA C.M., Stockholm – June 14, 2010
Status of the Pattern Recognition with
STT Detector risk’s assessment
M. Kuhn, P. Hopchev, M. Ferro-Luzzi
STT pattern recognition improvements since last December meeting and
Status of the Pattern Recognition with the Hough
Progress on the online tracking algorithm
Hit Triplet Finding in the PANDA-STT
the Pattern Recognition Workshop
3rd European Nuclear Physics Conference
Resolutions in the central tracker without the Mvd system
Status of the Offline Pattern Recognition Code GSI, December 10th 2012
Update on the FPGA Online Tracking Algorithm
Study of T0 Extraction in the Online Tracking Algorithm
Integration and alignment of ATLAS SCT
Vertex and Kinematic fitting with Pandaroot
Tracking Pattern Recognition
DT Local Reconstruction on CRAFT data
Status of the Offline Pattern Recognition Code Goa, March 12th 2013
Reddy Pratap Gandrajula (University of Iowa) on behalf of CMS
MUC simulation and reconstruction
road – Hough transform- c2
Understanding of the E391a Detector using KL decay
Presentation transcript:

FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches Institut, JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Groningen

2 Outline 1. Introduction 2. Tracking Algorithm 3. T0 extraction from tracking 4. Tracking at FPGA 5. Summary and Outlook

3 Introduction to the PANDA STT  4636 Straw tubes  planar layers axial layers (green) in beam direction 4 stereo double-layers for 3D reconstruction, with ±2.89 skew angle (blue/red) From STT : Wire position + drift time

4 Tracking Algorithm -- Road Finding Hit Tube_ID Layer_ID Hit: Seg_ID (3 bits) + LayerID (5 bits) + Tube_ID (6 bits) + Arrival time 1: Start from inner layer 2: Attach neighbour hit to tracklet layer by layer Boundary between two segments. Number of neighbor: 4 in axial layer; 6 in stereo layer

Known : x i, y i, d i Question: To determine a circle, x 2 + y 2 + ax + by + c = 0 Method: Minimize the equation E 2 = ∑(x i 2 + y i 2 + a x i + b y i + c) 2 (1/d i ) 2 S x = ∑x i … S xx = ∑x i x i … S xxx = ∑x i x i x i … Tracking Algorithm -- helix parameters calculation 5 1) Circle para. 2) Track quality. x y x c, y c, R

6 Pz reconstruction 1: The radius, the position of the helix center in the XY plane are determined. 2: Φ = kZ + Φ 0 z y x One cylinder the helix lies in. Based on Pt determined before One straw tube Track need to be tangent to the crossing ellipse. Crossing points (ellipse) Gianluigi Boca and Panda Collaboration, Panda STT TDR, 2012

Known : z i, Φ i, d i Question: To determine a line, Φ + kz + Φ 0 = 0 Method: Minimize E 2 = ∑(Φ i + kz i + Φ 0 ) 2 (1/d i ) 2 7 z(cm) Pz reconstruction Z Φ

Extract T 0 from Tracking T0 shifted by: -50 ns: -20 ns: 10 ns: 20 ns: Extracted T0: -47.0±4.0 ns -19.8±2.1 ns 9.4±2.5 ns 19.0±2.3 ns T0 shift = Ʃ di /N / const (N: number of hits di: signed distance of circle to track) 8

9 20 MHz 1600 ns revolution time 400 ns gap  T Mean between 2 events: 50 ns  Drift time: ~200 ns Event Structure -- pile-up Event pile-up

10 Tracking Strategy with experimental data Hits are sorted according to their arrival time. In case of T 0 provided: Start from T 0  Collect hits in 220 ns window  Run tracking algorithm  Assign track to right event In case of T 0 not provided: Do tracking and T 0 extraction at the same time

T0 (ns) : MC Input Iter_ #0 T0 = 9.0 ns #1 T0 = 35.7 ns #1 T0 = 95.3 ns T0 (ns) : MC Input Iter_ #0 T0 = 37.2 ns #1 T0 = 9.4 ns #1 T0 = 98.3 ns T0 (ns) : MC Input Iter_ #0 T0 = 38.2 ns #1 T0 = ns #1 T0 = ns #1 T0 = ns T0 (ns) : MC Input Iter_ #1 T0 = ns #1 T0 = ns #1 T0 = ns #1 T0 = ns T0 (ns) : MC Input Iter_

12 PC as data source and receiver.  Ethernet.  Optical link FPGA FIFO Tracking algorithm Ethernet via Optical Link Setup and Test FIFO

13 Block diagram of algorithm in VHDL

Performance at FPGA For one event with 100 hits (6 tracks): 7 μs Hit readingRoad finderPt extractionPz extraction (100 cc)(50 cc X 6) (120 cc X 2 X 6)(60 cc X 2 X 6) 14

Tracking at FPGA Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA. 15

16 Performance test 16 N_gen: number of generated tracks with at least 3 hits in STT |P_rec - P_gen| < 6 sigma

17 Performance at different event rate 17 Number of fake tracks per event increases at high event rate.

18 Summary and Outlook  σ_pt : ~ 3.2% σ_pz : ~ 4.2%.  7 μs/event (6 tracks), MHz.  Tracking strategy in case of W/O T0. Next to do:  Include MVD  Expand to Secondary Vertices  Test with a prototype DAQ

19 Thank you

Square Root Operation C++ VHDL Xc: Yc: R: (0.01%) Zi: C++ VHDL 29.4 ± ± ± ± bins in the range of 1 ~ 4, error ~ 0.4% Linear extrapolation, precision improves 20 z(cm) Φ

21 The Structure of PANDA TDAQ  Time Distribution System – provide clock for hit timestamps  Concentrators/Buffers – buffering and on the fly data flow manipulation  L1 Compute Nodes – mark hits which might belong to the same event (time slice)  L2 Feature Extraction Nodes – combine detector information to extract physical signatures (momentum, …)  L3 Event Selection Nodes – event selection based on a complete reconstruction (PID, vertex, invariant mass, …) Prototype Trigger-less Data Acquisition by Milan Wagner

The Missing Event at Event-based simulation Tracks in this event are not well reconstructed. In this case, it is hard to extract a T 0. 22

Tracking at FPGA MHz Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA. 23

24 Tracking Strategy  1) Start from 0  2) hits in 220 ns window  3) run tracking algorithm  4) extract T 0 of next event  5) go back to 2) Two time-based simulations: 1)1 GeV single muon 2)DPM HK

Performance at FPGA For one event with 100 hits (6 tracks): 7 μs Hit readingRoad finderPt extractionPz extraction (100 cc)(50 cc X 6) (120 cc X 2 X 6)(60 cc X 2 X 6) 25 HK 22.7

#0 T0 = 8.3 ns #2 T0 = 31.7 ns #1 T0 = 28.0 ns T0 (ns) : MC Input Iter_ #0 T0 = 8.5 ns #2 T0 = 34.6 ns #1 T0 = 36.3 ns T0 (ns) : MC Input Iter_ #0 T0 = 9.7 ns #2 T0 = 35.9 ns #1 T0 = ns T0 (ns) : MC Input Iter_ #1 T0 = ns #1 T0 = ns #1 T0 = ns #1 T0 = ns #0 T0 = 65.7 ns #1 T0 = ns T0 (ns) : MC Input Iter_ #1 T0 = ns #0 T0 = 67.8 ns #1 T0 = ns #1 T0 = ns #1 T0 = ns #1 T0 = ns T0 (ns) : MC Input Iter_ #1 T0 = ns #1 T0 = ns #1 T0 = ns #1 T0 = ns #0 T0 = 97.0 ns #1 T0 = ns T0 (ns) : MC Input Iter_ HK

To Improve the Momentum Resolution -- using a 2 nd iteration Pt(input) 1 st iteration 2 nd iteration 0.2GeV/c : ± ± GeV/c : 0.5 ± ± GeV/c : 0.99 ± ± GeV/c : 1.85 ± ± Pt(GeV/c) 1 st iteration2 nd iteration x y x c, y c, R

29 PZ reconstruction

30 Pz reconstruction 1: The radius, the position of the helix center in the XY plane are determined. 2: Φ = kZ + Φ 0 z y x One cylinder the helix lies in. Based on Pt determined before One straw tube Track need to be tangent to the crossing ellipse. Crossing points (ellipse) Gianluigi Boca and Panda Collaboration, Panda STT TDR, 2012

Pz reconstruction Known : z i, Φ i, d i Question: To determine a line, Φ + kz + Φ 0 = 0 Method: Minimize E 2 = ∑(Φ i + kz i + Φ 0 ) 2 (1/d i ) 2 31

Pz reconstruction Pt = 0.5 GeV/c Pz(input) 0.25 GeV/c : 3.7 % 0.50 GeV/c : 4.0 % 1.00 GeV/c : 4.3 % Pt = 1.0 GeV/c Pz(input) 0.5 GeV/c : 3.1 % 1.0 GeV/c : 3.8 % 2.0 GeV/c : 4.2 % Pt = 2.0 GeV/c Pz(input) 1.0 GeV/c : 3.7 % 2.0 GeV/c : 4.8 % 4.0 GeV/c : 5.2 % 32