سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده
Recap. Transient Response: First order system transient response –Step response specs and relationship to pole location Second order system transient response 2
Error
The error signal: e(t) = 1-y(t)=e -at us(t) Normalized time t/
General First-order system Step response starts at y(0+)=k, final value kz/p 1/p = is still time constant; in every , y(t) moves 63.2% closer to final value
Unit ramp response:
Note: In step response, the steady-state tracking error = zero.
Unit impulse response:
Performance of a second-order system 10
Prototype 2 nd order system:
Characteristic equation 12
Unit step response: 1) Under damped, 0 < ζ < 1
cos = =-Re/|root| = cos -1 (Re/|root|) = tan -1 (-Re/Im) d =Im =-Re
To find y(t) max:
Response to unit step input 21
Natural frequency n - the frequency of natural oscillation that would occur for two complex poles if the damping were equal to zero Damping ratio - a measure of damping for second-order characteristic equation 22
Characteristic equation 23
Finding n and for a second-order system 24
Second-order responses for underdamped 25
Unit impulse response R(s)=1 T(s)=Y(s) 26
27
Standard performance measures Peak time Settling time Percent overshoot Peak response 28
fig_04_14 29
Settling time The settling time is defined as the time required for a system to settle within a certain percentage of the input amplitude. 30
Settling time 31
Rise time The time it takes for a signal to go from 10% of its value to 90% of its final value 32
Rise time 33
Peak time Peak time is the time required by a signal to reach its maximum value. 34
Peak time 35
Percent overshoot Percent Overshoot is defined as: P.O. = [(M pt – fv) / fv] * 100% M pt = The peak value of the time response fv = Final value of the response 36
Percent overshoot 37
Finding transient response 38
39
Gain design for transient response 40
41
Controllable Canonical Form
Observable Canonical Form Diagonal Form
Jordan Form
حل معادلات فضاي حالت در محدوده فركانس
حل معادلات فضاي حالت در محدوده زمان عكس تبديل لاپلاس مي گيريم: از معادله
سؤال: چگونه ماتريس را محاسبه كنيم؟ (2). (3). (1).
Example 1)
Example2) If
روش سوم: تابع يك ماتريس مربعي ) Function of a square matrix) يك تابع باشد كه در Spectrum (دامنه يا طيف) و اگر نيز يك چند جمله اي باشد كه داراي مقادير مساوي مانند در دامنه باشد سپس تابع مي باشد، بشكل زير تعريف مي گردد: اگر تعريف شده باشد كه يك تابع مقدار-ماتريسي ( Matrix Valued )
يعني كه اگر يك ماتريس باشد، اگر كه مقدار از روي شود، ما مي توانيم يك چندجمله اي پيدا كنيم كه داراي درجه داده مي باشد بطوريكه: بطوريكه برابر با در دامنه كه تمامي توابع عبارتند از: مي باشد. از اين تعريف مي دانيم
طريقه عمل : 1. مقادير ويژه را محاسبه نمائيد مثال : اگر را محاسبه نمائيد.
1) 2)
مثال:.1.2
مثال: (1
From
مثال:
حل معادلات حالت
حل : (1 (2 (3 (4
مثال: حل:
حل:
مثال : حل :