Extra Lecture and examples

Slides:



Advertisements
Similar presentations
Chapter 5 SNMPv1: Communication and Functional Models.
Advertisements

Communication and Functional Models
SNMP Operations * * Mani Subramanian “Network Management: Principles and practice”, Addison-Wesley, 2000.
SNMPv2 Network Management Spring 2014 Bahador Bakhshi CE & IT Department, Amirkabir University of Technology This presentation is based on the slides listed.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 24 Network Management: SNMP.
TCP/IP Protocol Suite 1 Chapter 21 Upon completion you will be able to: Network Management: SNMP Understand the SNMP manager and the SNMP agent Understand.
CSCE 515: Computer Network Programming Chin-Tser Huang University of South Carolina.
1 Pertemuan 07 Model Komunikasi Matakuliah: H0372/Manajemen Jaringan Tahun: 2005 Versi: 1/0.
Pertemuan 10 Perbedaan antar versi SNMP
1 SNMP Simple Network Management Protocol. 2 SNMP Overview Define mechanism for remote management of network devices (routers, bridges, etc.) Fundamental.
MJ08/07041 Session 08 SNMPv2 Adapted from Network Management: Principles and Practice © Mani Subramanian 2000 and solely used for Network Management course.
SNMP PROTOCOL Copyright © 2001 by Aiko Pras These sheets may be used for educational purposes.
COMP4690, by Dr Xiaowen Chu, HKBU
SNMP PROTOCOL Copyright © 2001 by Aiko Pras These sheets may be used for educational purposes.
SNMP Simple Network Management Protocol
Chapter 5 SNMPv1: Communication and Functional Models.
Network Management: SNMP
SNMPv1 Communication and Functional Models
1 SNMPv2 by Behzad Akbari Fall 2011 In the Name of the Most High These slides are based in parts upon slides of Prof. Dssouli (Concordia university )
Introduction to SNMP AfNOG 11, Kigali/Rwanda.
Ch. 31 Q and A CS332 Spring Network management more than just Ethernet Q: Comer mentions that network managers need to be able to account for different.
SNMP (Simple Network Management Protocol) Jon Sevy Geometric and Intelligent Computing Laboratory Department of Mathematics and Computer Science Drexel.
1 Network Management Computer Networks. 2 OSI Network Management Model Performance Management e.g. utilization Fault Management e.g. SNMP traps Configuration.
Simple Network Management Protocol Week 6.  MIB data is input in encoded form.  Information is then compiled into the central MIB in the NCS.
Chapter 6 Overview Simple Network Management Protocol
McGraw-Hill The McGraw-Hill Companies, Inc., 2000 SNMP Simple Network Management Protocol.
TCP/IP Protocol Suite 1 Chapter 21 Upon completion you will be able to: Network Management: SNMP Understand the SNMP manager and the SNMP agent Understand.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 23 Simple Network Management Protocol (SNMP)
SNMP Communication and Functional Models
SNMP (Simple Network Management Protocol)
Network Protocols UNIT IV – NETWORK MANAGEMENT FUNDAMENTALS.
SNMP ( Simple Network Management Protocol ) based Network Management.
Lec8: SNMP v1.
6LoWPAN-SNMP: Simple Network Management Protocol for 6LoWPAN
SNMPv1 (cont’d) & SNMPv2 (II) * * Mani Subramanian “Network Management: Principles and practice”, Addison-Wesley, 2000.
Chapter 8 Network Management
Communication and Functional Models
BAI513 - PROTOCOLS SNMP BAIST – Network Management.
Lec 3: Infrastructure of Network Management Part2 Organized by: Nada Alhirabi NET 311.
SNMP n Where did it come from ? –Internet Engineering Task Force »Network Management Area –SNMP V1 –MIB definitions –SNMPV2.
1 Network Management: SNMP The roots of education are bitter, but the fruit is sweet. - Aristotle.
1 Chapter 8 Network Management Security. 2 Outline Basic Concepts of SNMP SNMPv1 Community Facility SNMPv3 Recommended Reading and WEB Sites.
POSTECH DP&NM Lab 1 Simple Network Management Protocol (SNMP) Mi-Jung Choi Dept. of Computer Science KNU
Simple Network Management Protocol (SNMP) SNMP v1 (RFC 1157) UDP Port 161 Operation supported by SNMP – Get: retrieves a scalar object value – Set: updates.
1 Based on Behzad Akbari Fall 2011 Network Management lectures.
Network Management: Principles and Practice
SNMP V2 & V3 W.lilakiatsakun. SNMP V2 Protocol RFC types of access to management information – Manager–agent request-response – Manager-Manager.
SNMP Simple Network Management Protocol A Standard Protocol for Systems and Network Management.
SNMP Management: Organization and Information Model by Behzad Akbari Fall 2008 In the Name of the Most High.
CITA 440 Week 6 SNMPv1. Internet SNMP Management Internet Engineering Task Force (IETF) –1990SNMPv1 –1996SNMPv2 –1998SNMPv3 Internet documents: –Request.
1 Kyung Hee University Prof. Choong Seon HONG SNMP Management Information.
Lecture 2 Recap.
Dept. of Computer Science and Engineering
Common Management Protocol W.lilakiatsakun. Topics SNMP (Widely used) SNMP (Widely used) Command Line Interface (CLI) Command Line Interface (CLI) Syslog.
Jaringan Telekomunikasi, Sukiswo ST, MT Sukiswo
Network management Communication model
Simple Network Management Protocol (SNMP)
Simple Network Management Protocol (SNMP)
Karl Quinn 23rd November 2004 NDS M.Sc.
Network Management: SNMP
SNMPv1 Network Management: Communication and Functional Models
Network Management Computer Networks.
SNMPv1 (cont’d) & SNMPv2 (II)*
SNMPv1 Network Management: Communication and Functional Models
SNMPv2 These slides are based in parts upon slides of Prof. Dssouli (Concordia university)
Chapter 6 SNMPv2 6-1 Network Management: Principles and Practice
SNMP (Simple Network Management Protocol) based Network Management
SNMPv2 OVERVIEW: LIMITATIONS OF SNMPv1 HISTORY OF SNMPv2 • HIERARCHIES
CT1305 Computer Network Management Dr. Mostafa H. Dahshan
Presentation transcript:

Extra Lecture and examples SNMP Extra Lecture and examples

Outline Reading Columnar Objects SNMP PDU messages GetRequest Example GetNextRequest Example Lexicographic Ordring- example GetBulkRequest Example SNMP Decentralized management Message Encapsulation and UDP Port

Two Kinds of Managed Objects Type-Specific Objects: sysDescr OBJECT-TYPE SYNTAX DisplayString (SIZE(0..255)) ::= {system 1} OID: mib-2.system.1.0 Columnar Objects OID: mib-2.interface.ifTable.ifEntry.ifDescr.2 mib-2.interface.ifTable.ifEntry.ifDescr.6 mib-2.interface.ifTable.ifEntry.ifType.2 mib-2.interface.ifTable.ifEntry.ifType.6

Columnar Objects .ifTable.ifEntry.1 (1.3.6.1.2.1.2.2.1.1) .ifTable.ifEntry.2 (1.3.6.1.2.1.2.2.1.2) .ifTable.ifEntry.3 (1.3.6.1.2.1.2.2.1.3) ifIndex ifDescr ifType . . . 1 le0 6 . . . 6 llc0 1 . . . 7 lo0 24 . . . 9 le1 6 . . . 1.3.6.1.2.1.2.2.1.2.6 1.3.6.1.2.1.2.2.1.3.7

SNMP PDU messages . . . error-status error-index name value PDU type request-id variable-bindings GetRequest, GetNextRequest, SetRequest PDU type request-id error-status error-index variable-bindings GetResponse error-status INTEGER { noError (0), tooBig (1), noSuchName(2), badValue (3), readOnly (4), genErr (5) }, error-index INTEGER, variable-bindings name value var-bind 1 var-bind 2 var-bind n . . .

GetRequest PDU Sender includes the following fields: sysServices (7) sysLocation (6) sysDescr (1) system (mib-2 1) sysObjectId (2) sysUpTime (3) sysName (5) sysContact (4) Sender includes the following fields: PDU Type request-id Variable-bindings A list of object instances whose values are requested SNMP dictates that a scalar object is identified by its OBJECT-IDENTIFIER concatenated with 0 e.g., sysDescr.0: distinguishes between the object type and an instance of the object

GetRequest PDU .0 indicates that the scalar value should be retrieved (scalar objects only) Manager Agent Process Process GetRequest (sysDescr.0) GetResponse (sysDescr .0= "SunOS" ) GetRequest (sysObjectID.0) GetResponse ( sysObjectID.0=enterprises.11.2.3.10.1.2 ) GetRequest (sysUpTime.0) GetResponse (sysUpTime.0=2247349530) GetRequest (sysContact.0) GetResponse (sysContact.0=" ") GetRequest (sysName.0) GetResponse (sysName.0="noc1 ") GetRequest (sysLocation.0) GetResponse (sysLocation.0=" ") GetRequest (sysServices.0) GetResponse (sysServices.0=72) A managed object should implement the system group. The manager by detecting the object, it will poll the new object to learn the values of objects in the system group The manager could have used only one message to obtain the values of all objects under system group: using “variable binding list”

GetRequest PDU Get Request is atomic Either all values (of all variables provided in the binding list) retrieved or none error message is generated if at least one of the variables could not be found/returned; error- status: noSuchName tooBig genErr error-index: indicate the problem object (i.e., variable in binding list that caused the problem) With SNMP, only leaf objects in the MIB can be retrieved e.g. it is not possible to retrieve an entire row of a table by simply accessing the Entry Object (e.g., ipRouteEntry)  the management stations has to include each object instance (in the row) in the binding list By including the complete object identifier and respecting the rule of indexing!

GetRequest PDU ipRouteDest ipRouteMetric1 ipRouteNextHop 9.1.2.3 3 99.0.0.3 10.0.0.51 5 89.1.1.42 10.0.0.99 5 89.1.1.42 Index of table GetRequest (ipRouteDest.9.1.2.3, ipRouteMetric1.9.1.2.3, ipRouteNextHop. 9.1.2.3 )

GetNextRequest PDU PDU format: Difference: sysServices (7) sysLocation (6) sysDescr (1) system (mib-2 1) sysObjectId (2) sysUpTime (3) sysName (5) sysContact (4) PDU format: same as GetReqest Difference: each variable in the binding list refers to an object instance next in the lexicographic order GetNextRequest (sysDescr.0)  return the value of the object instance of sysObjectId Advantages: Allows a network manager to discover a MIB structure dynamically Efficient way for searching through tables whose entries are unknown

GetNextRequest PDU Error message: no object next to sysServices Manager Agent Process Process GetRequest (sysDescr.0) GetResponse (sysDescr .0= "SunOS" ) GetNextRequest (sysDescr.0) GetResponse ( sysObjectID.0=enterprises.11.2.3.10.1.2 ) GetNextRequest (sysObjectID.0) GetResponse (sysUpTime.0=2247349530) GetNextRequest (sysUpTime.0) GetResponse (sysContact.0=" ") GetNextRequest (sysContact.0) GetResponse (sysName.0="noc1 ") GetNextRequest (sysName.0) GetResponse (sysLocation.0=" ") GetNextRequest (sysLocation.0) GetResponse (sysServices.0=72) GetNextRequest (sysServices.0) GetResponse (noSuchName) Error message: no object next to sysServices Get-Next-Request Operation for System Group

Generalized Case A sample MIB that contains both scalar values and aggregate objects Retrieving scalar as well as aggregate objects using get- request and get-next-request T Z A B 1.1 E 2.1 3.1 1.2 2.2 3.2

Get-Next Request MIB Tree : * In SNMP, Only leaf objects have values. 1 2 3 4 5 6 MIB Tree : * In SNMP, Only leaf objects have values. :Non-Leaf Object :Leaf Object

Generalized Case A Manager Agent Process Process B GetRequest ( A ) GetResponse ( A ) GetRequest ( B ) T GetResponse ( B ) GetRequest (T.E.1.1) GetResponse ( T.E.1.1 ) E GetRequest (T.E.1.2) GetResponse ( T.E.1.2 ) GetRequest (T.E.2.1) T.E.1.1 T.E.2.1 T.E.3.1 GetResponse ( T.E.2.1 ) GetRequest (T.E.2.2) GetResponse ( T.E.2.2 ) T.E.1.2 T.E.2.2 T.E.3.2 GetRequest (T.E.3.1 ) GetResponse ( T.E.3.1 ) GetRequest (T.E.3.2 ) Z GetResponse ( T.E.3.2 ) GetRequest (Z ) GetResponse ( Z )

Generalized Case Observations: 1)- we need to know all the elements in the MIB, including the # of columns and rows in a table 2)- a MIB is traversed from top to bottom (i.e., from left to right in the tree structure) 3)- data in tables is retrieved by traversing all instances of a columnar object NOTES: 1)- dynamic table: # rows may not be known to manager A request to T.E.1.3 results in error message 3)- GetNextRequest could avoid this! 4)- A convention is required for the definition of the next object in a MIB  SNMP uses lexicographic convention A B T E T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 Z

Lexicographic Convention Procedure for ordering Start with leftmost digit as first position Before increasing the order in the first position, select the lowest digit in the second position Continue the process till the lowest digit in the last position is captured Increase the order in the last position until all the digits in the last position are captured Move back to the last but one position and repeat the process Continue advancing to the first position until all the numbers are ordered Tree structure for the above process

Lexicographic Ordring- example start end 3 9 1 2 18 5 6 10 21 4 MIB example of lexicographic ordering

GetNextRequest PDU T.E.1.1 is next object to scalar B GetRequest ( A ) GetResponse ( A ) GetNextRequest ( A ) GetResponse ( B ) GetNextRequest ( B ) GetResponse ( T.E.1.1 ) GetNextRequest (T.E.1.1 ) GetResponse ( T.E.1.2 ) GetNextRequest (T.E.1.2 ) GetResponse ( T.E.2.1 ) GetNextRequest (T.E.2.1 ) GetResponse ( T.E.2.2 ) GetNextRequest (T.E.2.2 ) GetResponse ( T.E.3.1 ) GetNextRequest (T.E.3.1 ) GetResponse ( T.E.3.2 ) GetNextRequest (T.E.3.2 ) GetResponse ( Z ) GetNextRequest ( Z ) GetResponse ( noSuchName ) Manager Process Agent T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.1 is next object to scalar B

GetNextRequest PDU Advantages of Get-Next-Request GetRequest ( A ) GetResponse ( A ) GetNextRequest ( A ) GetResponse ( B ) GetNextRequest ( B ) GetResponse ( T.E.1.1 ) GetNextRequest (T.E.1.1 ) GetResponse ( T.E.1.2 ) GetNextRequest (T.E.1.2 ) GetResponse ( T.E.2.1 ) GetNextRequest (T.E.2.1 ) GetResponse ( T.E.2.2 ) GetNextRequest (T.E.2.2 ) GetResponse ( T.E.3.1 ) GetNextRequest (T.E.3.1 ) GetResponse ( T.E.3.2 ) GetNextRequest (T.E.3.2 ) GetResponse ( Z ) GetNextRequest ( Z ) GetResponse ( noSuchName ) Manager Process Agent Advantages of Get-Next-Request 1)- no need to know the object ID of the next entity to retrieve its value 2)- issues with dynamic table resolved 3)- allows NMS to discover the structure of a MIB view dynamically 4)- provides an efficient mechanism for searching a table whose entries are unknown

Additional Messages inform-request manager-to-manager message The receiving manager responds with a response message Enhances interoperability get-bulk-request transfer of large data, e.g. retrieval of table data SNMPv2-trap Similar to trap messages in SNMPv1

GetBulkRequest-PDU Operation Z A B 1.1 E 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.3 T.E.2.3 T.E.3.3 T.E.1.4 T.E.2.4 T.E.3.4

GetBulkRequest-PDU Operation GetRequest ( A,B ) GetNextRequest (T.E.1,T.E.2,T.E.3) GetResponse (T.E.1.1,T.E.2.1,T.E.3.1) GetNextRequest (T.E.1.1,T.E.2.1,T.E.3.1) GetResponse (T.E.1.2,T.E.2.2,T.E.3.2) GetResponse (T.E.1.3,T.E.2.3,T.E.3.3) GetNextRequest (T.E.1.3,T.E.2.3,T.E.3.3) GetResponse (T.E.1.4,T.E.2.4,T.E.3.4) GetResponse (T.E.2.1,T.E.3.1,Z) Manager Process Agent GetResponse (A,B) GetNextRequest (T.E.1.4,T.E.2.4,T.E.3.4) GetNextRequest (T.E.1.2,T.E.2.2,T.E.3.2)

GetBulkRequest-PDU Operation T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.3 T.E.2.3 T.E.3.3 T.E.1.4 T.E.2.4 T.E.3.4 2 non repetitive objects (A, B) 3 repetitive instances Of the columnar object T.E.1, T.E.2, T.E.3 Manager Agent Process Process GetBulkRequest ( 2,3, A,B,T.E.1, T.E.2, T.E.3 ) Response ( A, B, T.E.1.1, T.E.2.1, T.E.3.1 T.E.1.2, T.E.2.2, T.E.3.2 T.E.1.3, T.E.2.3, T.E.3.3 ) 3 more rows GetBulkRequest ( 0,3, T.E.1.3, T.E.2.3, T.E.3.3 ) Response ( T.E.1.4, T.E.2.4, T.E.3.4, Z , " endOfMibView" ) Z is next in the lexicographic order

GetBulkRequest-PDU Operation

SNMP Decentralized management Agent Element manager MIB SNMPv2 agent MIB SNMPv2 Manager/agent Management server MIB Management Applications SNMPv2 manager MIB SNMPv2 agent MIB SNMPv2 Manager/agent MIB SNMPv2 agent SNMPv2 Configuration

Message Encapsulation version community data Communication between remote peer processes Message consists of : Version identifier Community name Messages are exchanged in Protocol Data Unit PDU Message encapsulated in UDP datagrams and transmitted Loss of message  time out! Like FTP, SNMP uses two well- known ports to operate: UDP Port 161 - SNMP Messages UDP Port 162 - SNMP Trap Messages Size of SNMP message: 1472 bytes

Default UDP Ports for SNMP Management Station Network Elements (NEs) Manager Agent SNMP SNMP 162 Any 161 Any UDP UDP IP IP Ethernet Ethernet