Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
ECSE-6230 Semiconductor Devices and Models I Lecture 14
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
University of Toronto ECE530 Analog Electronics Review of MOSFET Device Modeling Lecture 2 # 1 Review of MOSFET Device Modeling.
1 ELEC 422 Applied Integrated Circuit Design Section 2: MOS Fundamentals Chuping Liu [Adapted from Rabaey’s Digital Integrated Circuits, ©2003, J. Rabaey.
Chapter 6 The Field Effect Transistor
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 12 Lecture 12: MOS Transistor Models Prof. Niknejad.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Lecture 11: MOS Transistor
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Metal-Oxide-Semiconductor (MOS)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture 10: PN Junction & MOS Capacitors
Lecture #16 OUTLINE Diode analysis and applications continued
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Spring 2007EE130 Lecture 36, Slide 1 Lecture #36 ANNOUNCEMENTS Updated information for Term Project was posted on 4/14 Reminder: Coffee Hour today at ~4PM!
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 19 OUTLINE The MOSFET: Structure and operation
Types of MOSFETs ECE 2204.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE 466: VLSI Design Lecture 03.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
ECE 342 Electronic Circuits 2. MOS Transistors
NOTICES Project proposal due now Format is on schedule page
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Chapter 5: Field Effect Transistor
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 28, 2011 MOS Transistor.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Chapter 4 Field-Effect Transistors
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
ELECTRONICS II VLSI DESIGN FALL 2013 LECTURE 4 INSTRUCTOR: L.M. HEAD, PhD ELECTRICAL & COMPUTER ENGINEERING ROWAN UNIVERSITY.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Structure and Operation of MOS Transistor
VLSI System Design Lect. 2.2 CMOS Transistor Theory2 Engr. Anees ul Husnain ( Department of Electronics.
Introduction to MOS Transistors Section Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Field Effect Transistors (1) Dr. Wojciech Jadwisienczak EE314.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
Introduction to CMOS VLSI Design CMOS Transistor Theory
EE130/230A Discussion 10 Peng Zheng.
MOSFET V-I Characteristics Vijaylakshmi.B Lecturer, Dept of Instrumentation Tech Basaveswar Engg. College Bagalkot, Karnataka IUCEE-VLSI Design, Infosys,
ELECTRONICS II VLSI DESIGN FALL 2013 LECTURE 5 INSTRUCTOR: L.M. HEAD, PhD ELECTRICAL & COMPUTER ENGINEERING ROWAN UNIVERSITY.
MOS Capacitor Lecture #5. Transistor Voltage controlled switch or amplifier : control the output by the input to achieve switch or amplifier Two types.
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Reading: Finish Chapter 17,
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Presentation transcript:

Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics

Damu, 2008EGE535 Fall 08, Lecture 22 Intrinsic and extrinsic Semiconductors Intrinsic semiconductor (no carriers at 0 0 K) Intrinsic semiconductor (n i = p i at room temp ) N type semiconductor (n i >> p i at room temp) N type semiconductor (n i >> p i at room temp) P type semiconductor (p i >> n i at room temp)

Damu, 2008EGE535 Fall 08, Lecture 23 PN Junction P- Depletion Region N type semiconductor (n i >> p i at room temp) P type semiconductor (p i >> n i at room temp) P-N Junction N+ P N

Damu, 2008EGE535 Fall 08, Lecture 24 PN Junction – Reverse Biasing Depletion width increases Reverse bias P N

Damu, 2008EGE535 Fall 08, Lecture 25 nMOSFET p- silicon L W SiO 2 Gate Source Drain Polysilicon n+ p+ silicon Bulk (substrate) t ox

Damu, 2008EGE535 Fall 08, Lecture 26 pMOSFET p-silicon L W Gate Source Drain Polysilicon n+ n well p+ Well p+silicon Bulk (substrate)

Damu, 2008EGE535 Fall 08, Lecture 27 Objective: to have current flow Objective: to have current flow L Gate Source Drain V ds I ds n P Gate Source Drain V ds I ds n P between Source and Drain between Source and Drain If this can be achieved !

Damu, 2008EGE535 Fall 08, Lecture 28 NMOS Transistor p- silicon L W SiO 2 Gate Source Drain Polysilicon n+ p+ silicon Bulk (substrate) t ox Poly SiO 2 p-type p- L SiO 2 Gate substrate t ox Capacitor Gate Substrate

Damu, 2008EGE535 Fall 08, Lecture 29 Capacitor Charging _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Damu, 2008EGE535 Fall 08, Lecture 210 The MOS Capacitor SiO 2 Poly Holes accumulate near the top Negative Voltage to Poly + + Flat Band Accumulation + _ SiO 2 Poly

Damu, 2008EGE535 Fall 08, Lecture 211 The MOS Capacitor Very Small Positive Voltage to Poly Flat Band Depletion + _ Holes are repelled, depleting the top SiO 2 Poly

Damu, 2008EGE535 Fall 08, Lecture 212 The MOS Capacitor

Damu, 2008EGE535 Fall 08, Lecture 213 Threshold Voltage V th V gs

Damu, 2008EGE535 Fall 08, Lecture 214 Strong Inversion

Damu, 2008EGE535 Fall 08, Lecture 215 Threshold Voltage V th Much More Positive n >> Ions V >> V th Weak Inversion n<< Ions V < V th Moderate inversion n  Ions V = V th Strong inversion V th Minimum Voltage for Inversion More Positive Less Positive SiO

Damu, 2008EGE535 Fall 08, Lecture 216 Cutoff: I ds = 0 V ds V gs + + D S G I ds - - =0

Damu, 2008EGE535 Fall 08, Lecture 217 First Approximation: Threshold Voltage p- L Gate Source Drain < V th n V gs No surface electrons p- L Gate Source Drain > V th n V gs Plenty of surface electrons

Damu, 2008EGE535 Fall 08, Lecture 218 Surface Charge with V gs p- L Gate Source Drain > V th n V gs Enough electrons p- L Gate Source Drain > >V th n V gs Much More electrons

Damu, 2008EGE535 Fall 08, Lecture 219 Cutoff: I ds = 0 V ds V gs + + D S G I ds - - >V th =0 p- L Gate Source Drain > V th I ds = 0 n V gs V ds = 0

Damu, 2008EGE535 Fall 08, Lecture 220 Linear: I ds increases with V ds V gs = 0.5V V gs = 1 V V ds I ds Linear: Resistive region p- L Gate Source Drain V ds < < V gs -V th V gs > V th I ds > 0 n V ds << 2(V gs – V th ) Neglect V ds 2 I ds

Damu, 2008EGE535 Fall 08, Lecture 221Example V gs = 0.5V V gs = 1 V V ds I ds Resistive region Source Drain 1V 2V I ds > 0 n V S D 2V V V th =0.8V V gs V ds P I ds Linear : I ds

Damu, 2008EGE535 Fall 08, Lecture 222 Pinch Off: V ds = V gs -V th V gs = 0.5V V gs = 1 V V ds I ds V gs = 2 V I ds V ds = V gs -V th Nonlinear V ds = V gs – V th V gd = V gs – (V gs –V th ) = V th

Damu, 2008EGE535 Fall 08, Lecture 223 Saturation: I ds independent of V ds For V ds >V gs -V th Vds = Vgs-V th Velocity saturation: I ds constant V ds > V gs -V th V gs > V th I ds sat Source Drain n+ p-silicon Pinch Off extends No channel !! V ds I ds I ds Saturation

Damu, 2008EGE535 Fall 08, Lecture 224 Regions of Transistor Operation 1. Linear region : V GS > V th V DS < V GS – V th V th - threshold voltage 2. Saturation region: V GS > V th V DS  V GS - V th Deep Triode V ds I ds I ds Saturation resistor I-V curve Triode region Saturation region V gs =0.5V V gs =1V V gs =2V X X X a b c

Damu, 2008EGE535 Fall 08, Lecture 225 Current Equation

Damu, 2008EGE535 Fall 08, Lecture 226 Channel Length Modulation > V gs -V th > V th I ds Source Drain n+ p-silicon Pinch Off extends channel length reduces V ds I ds I ds Saturation -V A   0.02V -1

Damu, 2008EGE535 Fall 08, Lecture 227PMOSFET

Damu, 2008EGE535 Fall 08, Lecture 228 PMOSFET: No current L Gate Source Drain _ I ds = 0 N P |V gs | > |V th | V ds = 0 V th Negative voltage V ds Negative voltage

Damu, 2008EGE535 Fall 08, Lecture 229 PMOSFET: Current flow L Gate Source Drain _ I ds > 0 N P |V gs | > |V th | | V ds | > 0 V gs & V ds Negative voltages

Damu, 2008EGE535 Fall 08, Lecture 230 PMOS Transistor 1. Linear region : |V GS | > |V th | V th - threshold voltage (Min for inversion layer) |V DS | << |V GS – V th | |V DS | < |V GS – V th | 2. Saturation region: |V GS | > |V th | |V DS |  |V GS - V th | Deep Triode Triode

Damu, 2008EGE535 Fall 08, Lecture 231 MOSFET Symbols