Chapter 1_2. Vector Space.  Definition ◦ Let V be a vector space, and let W be a subset of V, We define W to be a subspace if W satisfies the following.

Slides:



Advertisements
Similar presentations
Vector Spaces A set V is called a vector space over a set K denoted V(K) if is an Abelian group, is a field, and For every element vV and K there exists.
Advertisements

5.4 Basis And Dimension.
8.3 Inverse Linear Transformations
8.2 Kernel And Range.
Vector Spaces & Subspaces Kristi Schmit. Definitions A subset W of vector space V is called a subspace of V iff a.The zero vector of V is in W. b.W is.
Signal , Weight Vector Spaces and Linear Transformations
Signal , Weight Vector Spaces and Linear Transformations
THE DIMENSION OF A VECTOR SPACE
Orthogonality and Least Squares
Mathematics1 Mathematics 1 Applied Informatics Štefan BEREŽNÝ.
Length and Dot Product in R n Notes: is called a unit vector. Notes: The length of a vector is also called its norm. Chapter 5 Inner Product Spaces.
Review of basic concepts and facts in linear algebra Matrix HITSZ Instructor: Zijun Luo Fall 2012.
Linear Codes.
Chapter 5 Orthogonality.
Linear Algebra Chapter 4 Vector Spaces.
4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets; Bases 4.4 Coordinate systems.
Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Matrices and Vectors Objective.
4 4.4 © 2012 Pearson Education, Inc. Vector Spaces COORDINATE SYSTEMS.
Chapter 2: Vector spaces
Section 4.1 Vectors in ℝ n. ℝ n Vectors Vector addition Scalar multiplication.
Chapter 3 Vector Spaces. The operations of addition and scalar multiplication are used in many contexts in mathematics. Regardless of the context, however,
Vectors CHAPTER 7. Ch7_2 Contents  7.1 Vectors in 2-Space 7.1 Vectors in 2-Space  7.2 Vectors in 3-Space 7.2 Vectors in 3-Space  7.3 Dot Product 7.3.
AN ORTHOGONAL PROJECTION
Chapter 3 Vectors in n-space Norm, Dot Product, and Distance in n-space Orthogonality.
Elementary Linear Algebra Anton & Rorres, 9th Edition
Chapter 4 – Linear Spaces
Chapter 10 Real Inner Products and Least-Square
4.8 Rank Rank enables one to relate matrices to vectors, and vice versa. Definition Let A be an m  n matrix. The rows of A may be viewed as row vectors.
Chap. 5 Inner Product Spaces 5.1 Length and Dot Product in R n 5.2 Inner Product Spaces 5.3 Orthonormal Bases: Gram-Schmidt Process 5.4 Mathematical Models.
Chap. 4 Vector Spaces 4.1 Vectors in Rn 4.2 Vector Spaces
Class 24: Question 1 Which of the following set of vectors is not an orthogonal set?
1 MAC 2103 Module 8 General Vector Spaces I. 2 Rev.F09 Learning Objectives Upon completing this module, you should be able to: 1. Recognize from the standard.
Signal & Weight Vector Spaces
4.1 Introduction to Linear Spaces (a.k.a. Vector Spaces)
Ch 6 Vector Spaces. Vector Space Axioms X,Y,Z elements of  and α, β elements of  Def of vector addition Def of multiplication of scalar and vector These.
4.8 Rank Rank enables one to relate matrices to vectors, and vice versa. Definition Let A be an m  n matrix. The rows of A may be viewed as row vectors.
5.4 Basis and Dimension The equations can be written by using MathType
Chapter 4 Vector Spaces Linear Algebra. Ch04_2 Definition 1: ……………………………………………………………………. The elements in R n called …………. 4.1 The vector Space R n Addition.
4.5: The Dimension of a Vector Space. Theorem 9 If a vector space V has a basis, then any set in V containing more than n vectors must be linearly dependent.
4 4.5 © 2016 Pearson Education, Inc. Vector Spaces THE DIMENSION OF A VECTOR SPACE.
4 Vector Spaces 4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets; Bases 4.4 Coordinate.
Chapter 5 Chapter Content 1. Real Vector Spaces 2. Subspaces 3. Linear Independence 4. Basis and Dimension 5. Row Space, Column Space, and Nullspace 6.
Sec Sec Sec 4.4 CHAPTER 4 Vector Spaces Let V be a set of elements with vector addition and multiplication by scalar is a vector space if these.
Extending a displacement A displacement defined by a pair where l is the length of the displacement and  the angle between its direction and the x-axix.
1 Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Review Matrices.
Beyond Vectors Hung-yi Lee. Introduction Many things can be considered as “vectors”. E.g. a function can be regarded as a vector We can apply the concept.
Inner Product Spaces Euclidean n-space: Euclidean n-space: vector lengthdot productEuclidean n-space R n was defined to be the set of all ordered.
8.2 Kernel And Range.
Linear Algebra Lecture 26.
Partial Derivative - Definition
Matrices and Vectors Review Objective
VECTOR SPACES AND SUBSPACES
Section 4.1: Vector Spaces and Subspaces
Section 4.1: Vector Spaces and Subspaces
Vectors, Linear Combinations and Linear Independence
VECTOR SPACES AND SUBSPACES
Signal & Weight Vector Spaces
Linear Algebra Lecture 39.
Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors.
Signal & Weight Vector Spaces
I.4 Polyhedral Theory (NW)
Elementary Linear Algebra
Linear Algebra Lecture 20.
I.4 Polyhedral Theory.
Chapter 4 Vector Spaces 4.1 Vector spaces and Subspaces
Vector Spaces, Subspaces
General Vector Spaces I
Linear Vector Space and Matrix Mechanics
THE DIMENSION OF A VECTOR SPACE
Presentation transcript:

Chapter 1_2. Vector Space

 Definition ◦ Let V be a vector space, and let W be a subset of V, We define W to be a subspace if W satisfies the following 3 conditions  Vector Space V 의 Subset W 이므로 Vector Space 의 Group 성질과 Field 성질이 보존되면 Sub-Space 가 된다.  원점 O 를 항상 보존한다는 것을 주의한다.

 Example of Sub-Vector Space ◦ Vector Space V ◦ Sub-vector space W (Blue Region)  Principle Component Analysis

 Vector Space in Non-Euclidean Space Vector Space with center p Vector Space with center q 각 Vector Space 사이는 얼마나 휘었는가 ? ( 곡률 ) Euclidean Space 를 적용할 수 있는 범위는 어느 정도인가 ? (Point Set Toplology with epsilon-delta

 Let V be a vector space, and let. Let. An expression of type  Is called “Linear Combination” of.  Subspace W 가 의 모든 Linear Combination 에 의해 만들어진다면 Generates W 라 한다.

 Linear Combination 과 Matrix ◦ Linear Combination 의 또 다른 표현 ◦ 연립 방정식의 해법은 Sub-Space 간의 관계로 표현 될 수 있다.

 Linear Combination & Differential ◦ Assume, then ◦ Let ◦ Linear Combination with ◦ Gradient or nabla of f(x)  편미분 자체의 표현은 Vector 표현이다. 이것을 상미분 방정식 (Scalar) 표현으로 바꾸기 위해서는 Dot Product 가 적용되는 새로운 형식이 필요하다.

 Let. Let where . A Dot product/Scalar product is defined as follows.  Properties ◦ 1. Commutative ◦ 2. Distributive ◦ 3. Associative if,

 Dot Product 혹은 Scalar Product 는 Vector Space 위의 연산에 있어 가장 근본적인 연산이 되 며 공학적으로나 수학적으로 이를 사용하여야만 유의미한 문제 해결이 가능해진다.  Dot Product 는 어떤 단위 벡터에 대한 임의 벡터 의 사영된 크기가 된다.  벡터 를 벡터 에 의 해 Generate 된 Subspace 위에 나타낼 때의 모습이 가 된다.  혹은 에 의해 Generate 된 Subspace 상의 한 벡터가 된다.

 Dot Product 의 응용 ◦ Orthogonality  When is perpendicular, these vectors satisfy the following condition   Assume that is a linear combination of such that  In addition,  We can obtain If we define a dot product as an alternative one such as We can construct a stochastic filter algorithm

 Dot Product 와 미분 ◦ 앞에서 편미분 은 벡터 ( 필드 ) 의 번째 성분임을 알았다. ◦ 그런데 출발점 에서 시작하여 속도 를 가진 벡터를 생 각하자 ◦ 이 벡터는 함수 에 의하여 변환된다고 생각하자. ◦ 이러한 함수 관계의 시간에 대한 변화율을 생각하면,

◦ 즉, Gradient 와 속도 와의 Dot Product 가 의 속도에 대한 변화율이다. ◦ 최적화론에서는 속도 가 에 대한 변화율 로 나타나 최급강하법 (Gradient Descent Method) 라는 최적화 방 법론이 된다. ◦ 여기에서 이며 ◦ 를 “Directional Derivation” 이라 한다. ( 방 향 도함수 )

◦ 이때 Projection 함수 가 있어서 다음 을 만족한다고 하자. ◦ 앞에서 구한 Directional Derivation 에 를 적용하면 ◦ 이것을 에 대한 Linear Combination 으로 생각하면 ◦ 이는, 가 없다면 의 각 성분에 대한 의 Dot Product 로 볼 수 있다. 이를 Differential (1-form) 이라 하며 단위 입력에 대한 미소 선분 변화량으로 정의된다.

 함수도 앞의 Vector Space 공리를 만족하면 Space 를 구성할 수 있다. ◦ Let S be a set and K be a field. ◦ Consider a Function f of S such that  The function f is called K-valued function. ◦ Let V be the set of all functions of S into K and ….  Linearity ( 결합 법칙 성립 G1 )  Field Association : for  Zero Function : if x is in the set S of zero element for V HW 1. Linearity 가 성립 하면 결합 법칙이 성립 함을 증명하라. C 는 Field Component 이므로 자동적으로 배분 법칙 2 개가 성립한다.

 위 3 조건을 만족하고 함수 f 가 덧셈에 대한 역원 이 존재하면 “Function Space” 가 성립한다.  Example ◦ If there exists a vector Space V and f satisfies the conditions, then the set of functions on V constructs a function space over field K, such that ◦ Scalar Space and Continuous function space ◦ Differentiable function space

 Linearly Independent (1 차 결합 ) ◦ Let V be a vector space over K ◦ Let be elements of V ◦ Vectors are linearly independent iff ◦ Example

◦ Example 2 – Function space  Definition of Basis ◦ The vectors of V are linearly independent ◦ In addition, generates V ◦ Then, constitute or form a basis of V ◦ Example  The of example form a basis of  Two functions constitute a function space.  Coordinate ◦ The coordinate of an element of with respect to a basis is HW2. 이 두 함수가 1 차 독립 임을 증명하라. Coordinate Vector

 Theorem 2.2 (Maximal ?) ◦ Let be a set of generators of a vector space V. Let be a maximal subset of linearly independent elements. Then is a basis of V. (Where ) ◦ Basis 는 1 차 독립이며 벡터공간을 만들 수 있으면 어떤 것이든 가능하다. ◦ 특히 Orthogonal 이면 위 조건을 간단히 만족하므로 이 러한 특성을 가진, 어떠한 종류의 Group, Function, Mapping over Field 면 Basis 가 된다.

 Theorem 3.1 ◦ Let V be a vector space over field K, Let be a basis of V over K. Let, be a element of V. Then are linearly dependent.  Theorem 3.2 (The uniqueness of the number of the basis for V) ◦ Let V be a vector space and suppose that one basis has n elements, and basis has m elements. Then m=n.

 Let V be a vector space having a basis consisting of n elements. Then the number n is the dimension of V  Theorem 3.3 ◦ Let V be a vector space, and a maximal set of linearly independent elements of V. Then the set is a basis of V  Corollary 3.5 ( 따름 정리 ) ◦ Let V be a vector space and let W be a subspace of V. if then V=W

 Sum ◦ For, and ◦ If, then ◦ Moreover, ◦ Therefore is a subspace. ◦ V is Direct Sum of U and W if, there exist unique elements

 Notation of Direct Sum ◦ When V is a direct sum of subspaces U, W  Theorem 4.3 ◦ If V is a finite dimensional vector space over K, and  Direct Product ◦ If and, we define ◦ If, define the product ◦ Then is a vector space and called “Direct product “of U and W.

 Properties of Direct Product and Direct Sum ◦ Spanning dimensions of direct product ◦ Direct Sums ◦ Direct Products ◦ Addition is defined component wise, and multiplication by scalars is also component wise.

 Wedge Product (Exterior Product)