Zingiberales Zingiber officinialis (Zingiberaceae) Calathea lancifolia (Marantaceae) Ctenanthe oppenheiminiana (Marantaceae) Musa sp (Musaceae) Caryota mitis (Arecaceae) Arecales Rhapis excelsa (Arecaceae) Asparagales Ludisia discolor (Orchidaceae) Iris germanica (Iridaceae) Alismatales Elodea canadensis (Araceae) Clivia miniata (Amaryllidaceae) Asparagales Figure S1 P4MP4M P5MP5M P6MP6M P7MP7M P5UP5U P6UP6U m/z P4MP4M P5MP5M P6MP6M P4UP4U P5UP5U P6UP6U m/z P4MP4M P5MP5M P6MP6M P7MP7M P4UP4U P5UP5U P6UP6U P7UP7U m/z P4MP4M P5MP5M P5P P6MP6M m/z P4MP4M P5MP5M P5UP5U P4UP4U P7P7 P8P8 P6P6 P5P5 m/z P4MP4M P5MP5M P5P5 P7P P6P6 P8P8 m/z P4MP4M P5MP5M P5P5 P6P P4UP4U m/z P4MP4M P5MP5M P5P5 P7P7 P6P6 P8P P6MP6M P5UP5U m/z P4MP4M P5MP5M P5P P6MP6M m/z P4MP4M P5MP5M P6MP6M P6UP6U P4UP4U P5UP5U m/z Supplementary Fig. S1. MALDI-TOF mass spectrum of the isolated xylo-oligosaccharides generated by xylanase treatment of the 1 M KOH extracts of AIR from selected monocots. The [M+Na] + and [M-H+2Na] + ions corresponding to the most abundant xylo-oligosaccharides in each mixture are labeled as described in Figure 2 (main text).
Figure S2 Brachypodium distachyon (Poaceae) Setaria italica (Poaceae) Miscanthus x giganteus (Poaceae) Chemical Shift (ppm) Panicum virgatum (Poaceae) Oryza sativa (Poaceae) Reducing α-Xylp Reducing β-Xylp Terminal α-GlcpA Terminal 4Me-α-GlcpA 2,4-β-Xylp (MG) Terminal α-Araf 2-α-Araf 3,4-β-Xylp (Araf) Cyperus alternifolius (Cyperaceae) Terminal α-GlcpA Terminal 4Me-α-GlcpA 2,4-β-Xylp (MG) Tillandsia usneoides (Bromeliaceae) Ananus comosus (Bromeliaceae) α-GalpA α-Rhap β-Xylp (Rhap) 2-α-Araf 3,4-β-Xylp (Araf) Poales Supplementary Fig. S2. Partial 600-MHz 1D 1 H NMR spectra of xylo-oligosaccharides of selected commelinid species.
Figure S3 Zingiberales Chemical Shift (ppm) Strelitzia alba (Streliziaceae) Hedychium coronarium (Zingiberaceae) Amomum costatum (Zingiberaceae) Tradescantia virginiana (Commelinaceae Reducing α-Xylp Reducing β-Xylp Terminal α-GlcpA Terminal 4Me-α-GlcpA 2,4-β-Xylp (MG) Starch α-GalpA α-Rhap β-Xylp (Rhap) Terminal α-Araf Cocos nucifera (Arecaceae) Sabal etonia (Arecaceae) Howea forsteriana (Arecaceae) Terminal α-Araf 2-α-MeGlcpA (Arap) 3,4-β-Xylp (Araf) Commelinales Arecales Supplementary Fig. S3. Partial 600-MHz 1D 1 H NMR spectra of xylo-oligosaccharides of selected Zingiberales, Commelinales and Arecales species.
Figure S Chemical Shift (ppm) Allium cepa (Amarylidaceae) Crinum americanum (Amarylidaceae) Agapanthus africanus (Amarylidaceae) Agave americana (Asparagaceae) Reducing α-Xylp Reducing β-Xylp 2-α-GlcpA (Arap) Terminal α-GlcpA Terminal 4Me-α-GlcpA 2,4-β-Xylp (Arap) Terminal α-Arap 2-α-MeGlcpA (Arap) Asparagus officinalis (Asparagaceae) Tip Asparagus officinalis (Asparagaceae) Stem α-GalpA α-Rhap β-Xylp (Rha) Asparagales Supplementary Fig. S4 Partial 600-MHz 1D 1 H NMR spectra of xylo-oligosaccharides isolated from selected Asparagales (non-commelinid) species.
Figure S5 Dioscoreales Liliales Pandales Alismatales Acorales Spirodela polyrhiza (Araceae) Lemna minor (Araceae) Chemical Shift (ppm) Orontium aquaticum (Araceae) Reducing α-Xylp Reducing β-Xylp 2-α-GlcpA (Arap) Terminal α-GlcpA Terminal 4Me-α-GlcpA 2,4-β-Xylp (Arap) Terminal α-Arap Alstroemeria sp. (Alstroemeriaceae) Tulip sp. (Liliaceae) Reducing α-Xylp Reducing β-Xylp α-GalpA H1-Terminal α-GlcpA H1-Terminal 4Me-α-GlcpA α-Rhap 2,4-β-Xylp (GlcA) β-Xylp (Rha) 2,4-β-Xylp (MeGlcA) Pandanus utilis (Pandanaceae) Acorus americanus (Acoraceae) Dioscorea alata (Dioscoreaceae) Starch Supplementary Fig. S5 Partial 600-MHz 1D 1 H NMR spectra of xylo-oligosaccharides isolated from selected Liliales, Pandales, Discoreales Alismatales, and Acorales species.
2-α-MeGlcpA (Arap) 2,4-β-Xylp (MeGlcpA-Arap) 2,4-β-Xylp (MeGlcpA-Galp) Terminal α-Arap (MeGlcpA) Terminal β-Galp (MeGlcpA) 2-α-MeGlcpA (Galp) Reducing α-Xylp Terminal α-GlcpA Terminal 4Me-α-GlcpA Figure S6 Supplementary Fig. S6 Partial 600-MHz 1D 1 H gCOSY NMR spectra of xylo-oligosaccharides generated from Eucalyptus grandis wood GX. The labeled cross-peaks correspond to correlations between vicinal protons of the glycosyl residues in the sidechains containing GlcA/MeGlcA substituted with α-l- Arap or β-d-Galp residues.
m/z P 3 M-2AB P 4 M-2AB P 5 M-2AB P 2 M-2AB Figure S7 a m/z P 5 - 2AB P 6 - 2AB P 4 M-2AB P 3 M-2AB P 5 M-2AB P 3 - 2AB b P 4 - 2AB Supplementary Fig. S7. ESI-MS spectra of the per-O-methylated and 2AB-labeled xylo- oligosaccharides from Setaria italica. Xylo-oligosaccharides were generated by selectively labeling the reducing ends of polysaccharides in Setaria italica AIR with 2AB, extracting the labeled polysaccharides with 1 M KOH, fragmenting the resulting polysaccharides with endo-xylanase, separating the resulting products into fractions enriched in acidic and neutral oligosaccharides, and per- O-methylating the oligosaccharides in each fraction. a Spectrum of the fraction enriched in acidic oligosaccharides P 2 M, P 3 M, P 4 M, and P 5 M, which correspond to [M + Na] + ions at m/z 769, 929, 1089, and 1249, respectively. b Spectrum of the fraction enriched in neutral oligosaccharides P 3, P 4, P 5, and P 6, which correspond to [M + Na] + ions at m/z 711, 871, 1031, and 1191,, respectively. Comparable oligosaccharides were generated from Miscanthus giganteus, Panicum virgatum, Oryza sativa, and Brachypodium distachyon.
m/z X X X 2AB 697 MM MS 2 m/z 929 MS 3 m/z 929→ m/z Figure S8 X X 2AB MM 595 PP Supplementary Fig. S8. ESI-MS n indicates that the reducing-end xylose of Setaria italica GAX is frequently substituted with GlcA. The precursor ion at m/z 929 (i.e., P 3 M-2AB) was selected from the MS 1 spectrum (see supplementary Fig. S7a) of the fraction enriched in acidic oligosaccharides and subjected to ESI-MS n. Possible precursor ion structures and their fragmentation leading to the generation of Y-ions are shown in each spectrum. The fragmentation pathway (929 – 755 – 595/523) is consistent with the sequence Xyl-Xyl-(MeGlcA)-Xyl-2AB. The data do not rule out the possibility that an oligosaccharide with the sequence (Pentose)-Xyl-(MeGlcA)-Xyl-2AB, which corresponds to an oligosaccharide bearing a pentosyl sidechain, may also be present X X 2AB 523 MM 595 X X 2AB M
m/z MS 3 m/z 1089 → MS 2 m/z 1089 m/z m/z MS 4 m/z 1089 → 915 → Figure S9 X→X→X→X→2AB 857 MM X→X→X→2AB 857 MM 915 PP 595 X X X 2AB 683 MM →X→X→2AB 683 MM PP X X X 2AB 683 MM X X 2AB 523 MM 595 Supplementary Fig. S9. Further evidence that the reducing-end xylose of Setaria italica GAX is frequently substituted with GlcA. The precursor ion at m/z 1089 (i.e., P 4 M-2AB) was selected from the MS 1 spectrum (see supplementary Fig. S7a) of the fraction enriched in acidic oligosaccharides and subjected to ESI-MS n. Fragmentation events leading to the generation of Y ions are indicated in each spectrum.