Mobile Harbor Project 김효영. Contents  About CSD Lab  What is Mobile Harbor?  About the Project.

Slides:



Advertisements
Similar presentations
Unit 4 - I Said Stop!. Introduction New Topics Timing Parallelism Sequence of Operations New Features NXT terminals New Functions Wait For.
Advertisements

A Decision Support System for Improving Railway Line Capacity G Raghuram VV Rao Indian Institute of Management, Ahmedabad.
Time Speed and Distance Time, speed and distance are related to each other by the formulae Distance = Speed X Time Speed = Distance ÷ Time Time = Distance.
Computer System Architecture Dept. of Info. Of Computer Chap. 9 Pipeline and Vector Processing 9-1 Chap. 9 Pipeline and Vector Processing n 9-1 Parallel.
©2010 – J. Kim, J. Morrison – LOGMS 2010 – September 15, 2010 Identification of Economically Promising Port Architectures via Enumeration and Capacity.
Performed by: Yair Sommer Rea Yeheskel Instructor: Idan Katz Cooperated with:Motorola הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת חשמל Technion - Israel.
Class 24: Chapter 15: Materials Requirements Planning Class 24 Agenda –Review Deliverables Due Dates –Review Final Exam 90% of the 30 questions will come.
Processor 1 Processor 2 Disk 1 Disk 2 tasks Demo 1: Computer System with 2 Processors Sharing 2 Disks in Parallel.
Motion Mr. Skirbst Physical Science Topic 03. What is motion?
Digital Systems © Korea Univ. of Tech. & Edu. Dept. of Info. & Comm. Chap. 6 Digital Arithmetic 6-1 Chap. 6 Digital Arithmetic: Operations & Circuits n.
프로그래밍 기초와 실습 Chapter 7 Enumeration Types and typedef.
Term Project Detail Design 2 Traffic Generator So Jung LEE Dpnm Lab. CSE POSTECH
JMUSE: Java 프로그램을 위한 돌연변이 기반 오류 추적 시스템 연광흠, 김문주 Software Testing & Verification Group (SWTV) CS Dept., KAIST.
1 원지혜 Dept. of Biomed. Eng.BME303:Applied Electronic CircuitKyung Hee Univ. Applied Electric Circuit REPORT # 원지혜.
Algorithmic Problem Solving CMSC 201 Adapted from slides by Marie desJardins (Spring 2015 Prof Chang version)
Programing Concept Ken Youssefi/Ping HsuIntroduction to Engineering – E10 1 ENGR 10 Introduction to Engineering (Part A)
g = PO D g = × 21 = × g = 12g 12g = 882 ÷12.
CH 9 SEC 2 SPEED AND VELOCITY CALCULATING SPEED KEY- TO CALCULATE SPEED OF AN OBJECT DIVIDE THE DISTANCE THE OBJECT TRAVELS BY THE AMOUNT OF TIME IT.
An Introduction to Programming and Algorithms. Course Objectives A basic understanding of engineering problem solving process. A basic understanding of.
Load Balance in Linux Load balancing Sung-joon Choi Real-Time Operating Systems Lab. Seoul National University
Deterministic Problem Introduction 이 챕터에서 다음과 같은 Inhomogeneous 타입의 Equation 을 다룰것이다 Deterministic Problem 에서 g 에 대한 해 L 은 유일하다 Analysis: L 과 g 가 주어졌을 때.
Korea University Dept.of Industrial System & Information Engineering User Interface Lab The GOMS Family of User Interface Analysis Techniques : Comparison.
IE450 Models Relating Cycle-time, Throughput, WIP and Batch Sizes
프로그래밍 기초와 실습 Chapter 6 The Fundamental Data Types.
Scheduling. Scheduling: The allocation of resources over time to accomplish specific tasks. Demand scheduling: A type of scheduling whereby customers.
Quantities, Variables, Units and T-Charts
SNU OOPSLA Lab. 1 Great Ideas of CS with Java Part 1 WWW & Computer programming in the language Java Ch 1: The World Wide Web Ch 2: Watch out: Here comes.
Distance Speed and Time Calculating Speed Hrs and Min Calculating Distance Speed Distance or Time : Which Operation Hrs and Min Calculating Time Hrs and.
Graphical Approach to solve multi-step problems T. T. Liang, Brain Maths, Vol. 2, problem 44 The railway distance between town X and Y is 680 km. A train.
전자파 연구실 ELECTROMAGNETIC MTMs 세미나 자료 4.2.1~4.3.4 발표자 : 이동현 1.
IRM Enforcement of Java stack Inspection Pslab YunKyung Kim.
Multipurpose ITS Implementation Document 김계현 IM Lab.
©2010 – Woo-sung Kim, J. Morrison – LOGMS – September 15, Woo-sung Kim, Jong Hoe Kim, Hyoyoung Kim, Hyeyon Kwon and James R. Morssion KAIST, Department.
12.1 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
제 10 장 Cache Memory. kuic.kyonggi.ac.kr/~dssung 10.0 Cache = Cache Memory Cache 는 Fast Memory 이며 CPU 와 Memory 사이에 위치 Memory 내 일부 정보를 가지고 있다 CPU Cache.
9-4 The Shifter  Shifter shifts the value on Bus B  Right shift and Left shift Bidirectional shift register with parallel load First clock pulse 에 Bus.
On Computing the Data Cube. Research Report 10026, IBM Almaden Research Center, San Jose, California, 병렬 분산 컴퓨팅 연구실 석사 1 학기 송지숙.
Calculating Speed/Velocity & Using Motion Graphs Chapter 9.2 & 1. 5 The meaning of miles per hour.
Speed: the distance an object travels per unit of time Speed = distance / time Average speed = total distance / total time Solve: A whitetail deer runs.
Yellow book p.63 Study-Yellowbook p 많이 Scientists know a lot about birdsong, but there are _______ many questions. ~ 에 대하여 ~ 이 있다여전히 still.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 17 Queueing Theory.
Spring Hill Assembly1 InnoSys Park Brake Tool Master Control Panel Screens 1 3-Mar-2008.
 Please have a seat.  What is the change in velocity of a car that accelerates 50 m/s 2 for 0.25 seconds?  What is the speed of a car traveling 100m.
Linear OP-AMP Circuits
Motion. Motion terms and their definitions: position:distance and direction from a reference point motion:change of position over a time interval example:
Chapter 1_2. Vector Space.  Definition ◦ Let V be a vector space, and let W be a subset of V, We define W to be a subspace if W satisfies the following.
Chapter 1: Matter in Motion  Motion= a change in position over time  Reference point= an object that stays in place and shows us that something is moving.
Efficient Graph Traversal with Realistic Conditions by Olex Ponomarenko st Quarter Draft----
Scheduling Operations
Our Graphics Environment
Introduction to Science
Sinhala Language Support for Java Micro Edition
Introduction to Materials Management
D S T CAREFUL! ! 2hr 15 minutes to decimal is
RORO?.
Starter Questions 24/01/11 A car travels 50km. The journey takes 30minutes. Calculate the speed in km/hr. 2. A plane flies 2000km at an average speed of.
A car travels a distance of 665miles at
How to Describe & Recognize Motion
Matter in Motion.
An Introduction to Linux
LATITUDES AND LONGITUDES
Day 9 UNIT 1 Motion Graphs x t Lyzinski Physics.
Efficient Graph Traversal with Realistic Conditions
Speed Formula Quarter 4.
Motion Section 1.
Speed.
Speed Notes.
Speed, Distance, Time, Velocity Formulas
LATITUDES AND LONGITUDES
Introduction to OpenGL
Presentation transcript:

Mobile Harbor Project 김효영

Contents  About CSD Lab  What is Mobile Harbor?  About the Project

C omplex S ystem D esign Laboratory  develop fundamental understandings of the origins of complexity of a system where human beings are its central parts.  Projects:  SNUB Hospital: improve the ophthalmology department of SNUBH by providing high quality care process and thereby increasing customer satisfaction.  Mobile Harbor: design and verification for innovative port facilities including container crane robots and mooring controls with a primary objective of dramatically improving container throughput between in-land operation and container ships.

How Mobile Harbor Works Container Ship Port Mobile Harbor

Mobile Harbor Project

Why Mobile Harbor is Needed?  컨테이너선이 대형화 되는 반면 늘어나는 짐을 수용 할 항구가 부족한 상황  2015 년 완공 예정인 파나마 운하의 증설로 1 만 3000TEU 급 초대형 컨테이너운반선이 출현하고 있다.  현재 우리나라가 수주한 선박 계약고로만 따져도 1 만 톤 이상이 170 척에 이른다.  3 년 내 200 여 척의 대형 컨테이너선들이 돌아다니기 시작할 것이라고 업계는 내다보고 있다.  기존 컨테이너 부두가 수심과 크레인 등 하역용량 제 한으로 수용 불가능하다.

Project Introduction  Project Objectives  MH size, distance from Port to the container ship 에 따른 Mobile Harbor 개수 최적화를 위해 MH size, distance, # of MH 의 관계를 3 차원 그래프로 표현.  프로그램 구현 환경  JOGL (Java OpenGL) : a wrapper library that allows OpenGL (Open Graphics Library) to be used in the Java programming language. a standard specification defining a cross-language, cross- platform API for writing applications that produce 2D and 3D computer graphics.

Assumptions  Avoid waiting of ships  Zero mooring (setup) time  Inter-arrival time = Unloading time + Loading time + ∆  Operation sequence: unloading first and loading next  Parallel and sequential (un)loading possible but not both at the same time.  Unloading Time = Loading Time  One MH (un)loads at a time

Project Introduction Tr 1 = Tr 2 U: Unloading time L: Loading time ∆: Time till the arrival of the next ship Tr: Traveling time R: Release time W: Waiting time VARIABLES Ship U Arrival TU TL ∆ U Tr 1 R Tr 2 Arrival L L U Tr 1 R Tr 2 Tr 1 R Tr 2 L Tr 1 R OVERVIEW

Project Introduction Tr 1 = Tr 2 UNLOADING CASE Ship Arrival TU MH 1 U MH 2 U MH 3 U Tr 1 R Tr 2 Tr 1 R Tr 2 Tr 1 R Tr 2 MH 4 U Tr 1 R Tr 2 U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R W U W U W U: Unloading time L: Loading time ∆: Time till the arrival of the next ship Tr: Traveling time R: Release time W: Waiting time VARIABLES

Project Introduction Tr 1 = Tr 2 LOADING CASE Ship TL MH 1 L MH 2 L MH 3 L Tr 1 R Tr 2 Tr 1 R Tr 2 Tr 1 R Tr 2 MH 4 L Tr 1 R Tr 2 L Tr 1 R Tr 2 W L Tr 1 R Tr 2 W L Tr 1 R Tr 2 W L Tr 1 R Tr 2 W L Tr 1 R Tr 2 W L Tr 1 R Tr 2 W L Tr 1 R W L W L W U: Unloading time L: Loading time ∆: Time till the arrival of the next ship Tr: Traveling time R: Release time W: Waiting time VARIABLES

Case 1 Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 MH returns BEFORE the loading operation MH Unloading Time MH Traveling Time 1 MH Release Time MH Traveling Time 2 ≤ Total Unloading Time U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time

Case 1 - Optimal Number of MH 1.Container Amount 와 MH 크기만 고려 했을 때, MH 가 필요한 수 : Input: MH speed (knot) Release (TEU/hr) Container Amount (TEU) Inter-arrival Time (hr) Loading, Unloading (TEU/hr) MH size (TEU) Distance (km) Ex) Container Amount = 3000TEU, MH Size = 300TEU 이면, 최대 10 대의 MH 가 필요하다. Ex2) Container Amount = 1000TEU, MH Size = 1100TEU 이면, MH 가 1 대만 있으면 된다.

Case 1 - Optimal Number of MH 2. 배에 MH 가 한번에 한 대씩만 붙을 수 있다고 할때, U > 2TR + R : MH 는 2 대면 된다. Ex) Traveling Time = 1hr, Release Time = 2hr, Unloading time = 5hr 이면, MH1 이 MH2 가 unloading 할 동안 짐을 내려놓고 다시 와서 작업을 할 수 있기 때문에 2 대면 충분하다. Input: MH speed (knot) Release (TEU/hr) Container Amount (TEU) Inter-arrival Time (hr) Loading, Unloading (TEU/hr) MH size (TEU) Distance (km) MH 1 U MH 2 U Tr 1 R Tr 2 Tr 1 R Tr 2 W U W U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time

Case 1 - Optimal Number of MH 따라서, Optimal MH 의 수 = U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time MH 1 U MH 2 U U Tr 1 R Tr 2 Tr 1 R Tr 2 Tr 1 R Tr 2 U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R Tr 2 W U Tr 1 R W U W MH 3 U < 2TR + R : MH 는 만큼 필요하다. Ex) Traveling Time = 1hr, Release Time = 2hr, Unloading time = 2hr 이면, MH1 이 항구에 갔다 오는 시간 = 4hr, MH2 가 unloading 하는 시간 = 2hr. 그러므로 MH3 이 필요하다. 총 3 대의 MH 가 필요하다. 결과적으로, case 1 의 optimal MH 수는 앞 두 식의 minimum value 이다.

Case 2 Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 MH returns AFTER the loading operation but BEFORE next arrival MH Unloading Time MH Traveling Time 1 MH Release Time MH Traveling Time 2 ≤ Total Unloading Time Total Loading Time Delta <

Case 2 - Optimal Number of MH Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 1. 기본적으로 앞에서 Total Unloading 하는데 필요한 MH 수는 : U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time TU < U + 2TR + R ≤ TU + TL + ∆ 이므로

Case 2 - Optimal Number of MH 2. 추가로, MH 가 배로 돌아올 때까지 시간동안 Loading 할 MH 가 더 필요하다. 이것은 MH 가 배로 돌아올 때까지의 시간 :, 에서 Total Unloading 하는데 걸리는 시간 :, 을 빼고 Loading Time (L) 으로 나누어주면 구할 수 있다 : Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time

Case 2 - Optimal Number of MH 따라서, Optimal MH 의 수는 앞의 두 식을 더하면 총 필요한 MH 수가 나온다. U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2

Case 3 MH returns AFTER the next ship’s arrival Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 MH Unloading Time MH Traveling Time 1 MH Release Time MH Traveling Time 2 Total Unloading Time Total Loading Time Delta < TU

Case 3 - Optimal Number of MH 1. 기본적으로 Total Unloading 과 Total Loading 하는데 필요한 MH 수는 : U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time TU + TL + ∆ < U + 2TR + R ≤ TU + TL 이므로 Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 TU

Case 3 - Optimal Number of MH U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 TU 2. 추가로, MH 가 배로 돌아올 때까지 시간동안 Unloading 할 MH 가 더 필요하다. 이것은 MH 가 배로 돌아올 때까지의 시간 :, 에서 Total Unloading 과 Total Loading 하는데 걸리는 시간과 delta: 를 빼고 Unloading Time (U) 로 나누어주면 구할 수 있다 :

Case 3 - Optimal Number of MH Ship Arrival TU TL ∆ Arrival MH U Tr 1 R Tr 2 따라서, Optimal MH 의 수는 앞의 두 식을 더하면 총 필요한 MH 수가 나온다. U: Unloading time, L: Loading time, Tr: Traveling time, R: Release time

Summary  Case 1 : MH 가 모든 unloading 이 끝나기 전에 도착한다.  Optimal MH 수 :  Case 2 : MH 가 다음 배가 오기 전에 도착한다.  Optimal MH 수 :  Case 3 : MH 가 다음 배가 온 뒤 도착한다.  Optimal MH 수 :

Example Input: MH speed (km/hr) : 5km/hr Release (hr) : 2hr Container Amount (TEU) : 2400 TEU Inter-arrival Time (hr) : 24hr Loading, Unloading (hr) : 2hr MH size (TEU) : 120 TEU Distance (km) : 30km/hr

Checking – Parallel Operation  Case 에 따라 Optimal Number of MH 를 계산한 후, parallel operation 이 필요한지 확인해야 한다.  만약 Final #of MH * Unloading Time > Inter-arrival Time, 또는 Final #of MH * Loading Time > Inter-arrival Time 일 경우, Parallel Operation 이 필요하다. 이때, 최적화 된 parallel operation 하는 MH 개수는 : n = 또는 이다.

CODING 1knot = 1852m/hr ∴ 5knot = 9260 m/hr = km/hr INPUT VALUES (ASSUMPTIONS) Distance from Port to Ship Or from Ship to Port Total container amount of the container ship. → 2400 TEU ∴ 2400 TEU to unload and another 2400 TEU to load. Time until next ship arrives. → 24hours ∴ All loading and unloading has to be done before 24hrs. Loading and amount per hour at the ship. → 120 TEU / hr Releasing amount per hour at the port. → 120 TEU / hr

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP 선택된 면적의 색깔을 읽어오는 class

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP x, y, z 축 등 그래프 그 리는 class

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP Main class – 프로그램 을 실행 시켰을 때 돌 아가는 class 로써 input 값들을 받아오고 계산 하여 다른 method 를 호출 하는 class.

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP Viewport 를 바꾸는 class. World view 를 Screen view 로 전환하 여 screen 에 맞게 graph 를 그릴 수 있도록 계 산해주는 class.

CODING Classes Five Classes ColorData GLRenderer SimpleGLCanvas WVMapper dP 선택된 영역의 값을 출력하는 class.

Result

Analysis - Comparison  Case 1 : MH 가 모든 unloading 이 끝나기 전에 도착한다.  Optimal MH 수 :  Case 2 : MH 가 다음 배가 오기 전에 도착한다.  Optimal MH 수 :  Case 3 : MH 가 다음 배가 온 뒤 도착한다.  Optimal MH 수 :

Analysis MH Size ↑, # of MH ↓ Traveling Distance ↑, # of MH ↑ ∴ Correct MH SIZE # of MH TRAVELING DISTANCE

Example MH Size 260TEU, Traveling Distance 15km, # of MH = 3 MH SIZE # of MH TRAVELING DISTANCE

THE END 연구실 인턴 제도를 만들어주신 산업공학과 교수님들께 감사 드립니다. 인턴 기간 동안 많은 것을 가르쳐 주시고 지도해주신 이태식 교수님 께 감사 드립니다. 그리고 옆에서 많이 도와주신 성인경, 신규현, 남호창 선배님께도 감사 드립니다.