Mapping White Matter Connections in the Brain using Diffusion-Weighted Imaging and Tractography Andy Alexander Waisman Center Departments of Medical Physics.

Slides:



Advertisements
Similar presentations
Diffusion Tensor Imaging
Advertisements

Methods for Medical Imaging– Prof. G. Baselli 2012 Diffusion weighted MRI and DTI tractography Maria Giulia Preti
National Alliance for Medical Image Computing Diffusion Weighted MRI.
DTI group (Pitt) Instructor: Kevin Chan Kaitlyn Litcofsky & Toshiki Tazoe 7/12/2012.
DIFFUSION TENSOR IMAGING
MaxEnt 2007 Saratoga Springs, NY
ADC and ODF estimation from HARDI
Diffusion Tensor MRI And Fiber Tacking Presented By: Eng. Inas Yassine.
Diffusion Tensor Imaging Tim Hughes & Emilie Muelly 1.
Reproducibility of diffusion tractography E Heiervang 1,2, TEJ Behrens 1, CEM Mackay 3, MD Robson 3, H Johansen-Berg 1 1 Centre for Functional MRI of the.
Master thesis by H.C Achterberg
Introduction to diffusion MRI
1212 / mhj BM/i 2 Visualization of Diffusion Tensor Imaging Guus Berenschot May 2003 Supervisor: Bart ter Haar Romeny Daily Supervisor: Anna Vilanova i.
05/19/11Why’n’how | Diffusion model fitting and tractography0/25 Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula.
The structural organization of the Brain Gray matter: nerve cell bodies (neurons), glial cells, capillaries, and short nerve cell extensions (axons and.
Diffusion Tensor Imaging (DTI) is becoming a routine technique to study white matter properties and alterations of fiber integrity due to pathology. The.
Fiber Tracking Techniques in Magnetic Resonance Diffusion Tensor Imaging Grace Michaels CSUN, Computer Science Junior.
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL FADTTS: Functional Analysis of Diffusion Tensor Tract Statistics Hongtu Zhu, Ph.D. Department of Biostatistics.
Rician Noise Removal in Diffusion Tensor MRI
Graph-based consensus clustering for class discovery from gene expression data Zhiwen Yum, Hau-San Wong and Hongqiang Wang Bioinformatics, 2007.
Brain Lab Imaging Didactics
Benoit Scherrer, ISBI 2010, Rotterdam Why multiple b-values are required for multi-tensor models. Evaluation with a constrained log- Euclidean model. Benoit.
Comparative Diffusion Tensor Imaging (DTI) Study of Tool Use Pathways in Humans, Apes and Monkeys Ashwin G. Ramayya 1,2, Matthew F. Glasser 1, David A.
Visualizing Fiber Tracts in the Brain Using Diffusion Tensor Data Masters Project Presentation Yoshihito Yagi Thursday, July 28 th, 10:00 a.m. 499 Dirac.
Ramifications of Isotropic Sampling and Acquisition Orientation on DTI Analyses David H. Laidlaw 1, Song Zhang 1, Mark Bastin 2,3, Stephen Correia 4, Stephen.
Trade-offs between Angular and Spatial Resolution in High Angular Resolution Diffusion Imaging Liang Zhan 1, Neda Jahanshad 1, Alex D. Leow 2,3, Matt A.
Tensor Distribution Function in Multiple Shell High Angular Resolution Diffusion Imaging Tensor Distribution Function in Multiple Shell High Angular Resolution.
Processing HARDI Data to Recover Crossing Fibers Maxime Descoteaux PhD student Advisor: Rachid Deriche Odyssée Laboratory, INRIA/ENPC/ENS, INRIA Sophia-Antipolis,
Using Graph Theory to Study Neural Networks (Watrous, Tandon, Conner, Pieters & Ekstrom, 2012)
Tract-Based Spatial Statistics of Diffusion Tensor Imaging in Adult Dyslexia Todd Richards 1, Jeff Stevenson 1, James Crouch 2, L. Clark Johnson 3, Kenneth.
Benoit Scherrer, ISBI 2011, Chicago Toward an accurate multi-fiber assessment strategy for clinical practice. Benoit Scherrer, Simon K. Warfield.
Instructor Kwan-Jin Jung, Ph.D. (Carnegie Mellon University) Technical Assistant Nidhi Kohli (Carnegie Mellon University) David Schaeffer (University of.
1 Multi-valued Geodesic based Fiber Tracking for Diffusion Tensor Imaging Neda Sepasian Supervised by Prof. Bart ter Haar Romeny, Dr. Anna Vilanova Bartoli.
Bayesian evidence for visualizing model selection uncertainty Gordon L. Kindlmann
Luke Bloy1, Ragini Verma2 The Section of Biomedical Image Analysis
Analytic ODF Reconstruction and Validation in Q-Ball Imaging Maxime Descoteaux 1 Work done with E. Angelino 2, S. Fitzgibbons 2, R. Deriche 1 1. Projet.
Fiber Demixing with the Tensor Distribution Function avoids errors in Fractional Anisotropy maps Liang Zhan 1,Alex D. Leow 2,3, Neda Jahanshad 1, Arthur.
Finsler Geometry in Diffusion MRI Tom Dela Haije Supervisors: Luc Florack Andrea Fuster.
Sharpening Improves Clinically Feasible Q-Ball Imaging Reconstructions
Dave Frank & Maggie Mahan
NA-MIC National Alliance for Medical Image Computing Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory.
Complex brain networks: graph theoretical analysis of structural and functional systems.
Exploring Connectivity of the Brain’s White Matter with Dynamic Queries Presented by: Eugene (Austin) Stoudenmire 14 Feb 2007 Anthony Sherbondy, David.
Parcellation of Human Inferior Parietal Lobule Based on Diffusion MRI Bilge Soran 1 Zhiyong Xie 2 Rosalia Tungaraza 3 Su-In Lee 1 Linda Shapiro 1,2 Thomas.
Spatial Smoothing and Multiple Comparisons Correction for Dummies Alexa Morcom, Matthew Brett Acknowledgements.
NA-MIC National Alliance for Medical Image Computing Mathematical and physical foundations of DTI Anastasia Yendiki, Ph.D. Massachusetts.
Diffusion Tensor Analysis in Slicer3
NA-MIC National Alliance for Medical Image Computing NAMIC UNC Site Update Site PI: Martin Styner UNC Site NAMIC folks: C Vachet, G Roger,
Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skill Heidi Johansen-Berg 1, Valeria Della-Maggiore 3, Steve Smith.
Subjects are registered to a template using affine transformations. These affine transformations are used to align the tracts passing through the splenium.
Corpus Callosum Probabilistic Subdivision based on Inter-Hemispheric Connectivity May 2005, UNC Radiology Symposium Original brain images for the corpus.
Department of Psychiatry, Department of Computer Science, 3 Carolina Institute for Developmental Disabilities 1 Department of Psychiatry, 2 Department.
Data analysis steps Pre-process images to reduce distortions
Diffusion Tensor MRI From Deterministic to Probabilistic Modelling
NA-MIC National Alliance for Medical Image Computing NAMIC Core 3.1 Overview: Harvard/BWH and Dartmouth Structural and Functional Connectivity.
Corpus Callosum Probabilistic Subdivision based on Inter-Hemispheric Connectivity Martin Styner1,2, Ipek Oguz1, Rachel Gimpel Smith2, Carissa Cascio2,
Microstructure Imaging Sequence Simulation Toolbox
Diffusion Tensor Imaging
Introduction to diffusion MRI
Introduction to diffusion MRI
SWI-informed Diffusion Tensor Tractography
Introduction to diffusion MRI
Moo K. Chung1,3, Kim M. Dalton3, Richard J. Davidson2,3
Detection of Local Cortical Asymmetry via Discriminant Power Analysis
Human Brain Mapping Conference 2003 # 653
Diffusion MRI of Complex Neural Architecture
Cartography and Connectomes
Detecting Gray Matter Maturation via Tensor-based Surface Morphometry
Joseph I. Friedman et al. JIMG 2014;7:
Presentation transcript:

Mapping White Matter Connections in the Brain using Diffusion-Weighted Imaging and Tractography Andy Alexander Waisman Center Departments of Medical Physics and Psychiatry University of Wisconsin - Madison

Overview Streamline Tractography Probabilistic Tractography Global Tractography

Diffusion Models Diffusion Tensor Imaging (Basser et al. 1994) HARDI (High Angular Resolution Diffusion Imaging) –Single Shell of Diffusion Weighting –SHD of ADC (Frank et al. 2002, Alexander 2002) –Q-Ball (Tuch 2004) Diffusion Spectrum (q-Space) Imaging –qSI (Callaghan 1991; Assaf et al. 2000) –DSI (Wedeen et al. 2005) – Cartesian q-space –HYDI (Wu and Alexander 2007) – Multiple Shells Orientation Distribution Function - ODF –(Tuch et al. 2003; Wedeen et al. 2005) Fiber ODF –(Tournier et al. 2004; Descoteaux et al. 2007)

Diffusion Models Diffusion Tensor Imaging (Basser et al. 1994) HARDI (High Angular Resolution Diffusion Imaging) –Single Shell of Diffusion Weighting –SHD of ADC (Frank et al. 2002, Alexander 2002) –Q-Ball (Tuch 2004) Diffusion Spectrum (q-Space) Imaging –qSI (Callaghan 1991; Assaf et al. 2000) –DSI (Wedeen et al. 2005) – Cartesian q-space –HYDI (Wu and Alexander 2007) – Multiple Shells Orientation Distribution Function - ODF –(Tuch et al. 2003; Wedeen et al. 2005) Fiber ODF –(Tournier et al. 2004; Descoteaux et al. 2007)

Diffusion Tensor Imaging DW images

Courtesy G Kindlmann

White Matter Tractography

Tract Construction

Figure 1

Streamline Methods Steering or Propagation: Streamlines (Mori 1999; Conturo 1999; Basser 2000) Tensor Deflection (Westin 2002; Lazar 2003) Tensorlines (Weinstein 1999; Lazar 2003) Tract Integration: FACT (Mori 1999) Euler (Conturo 1999) Runge Kutta (Basser 2000)

DT-MRI Alexander Pretty Pictures M Lazar

PreopPostop Lazar et al. AJNR 2006

Corpus Callosum Abnormalities in Autism 24 y.o. autistic male26 y.o. male

cience S AAAS Brain Disconnectivity In Autism 12 July 2004 Vol 299 No Pages $10

Not-so Pretty Pictures 24 y.o. autistic male26 y.o. autistic male

Tractography Errors Error Sources/Factors: Anything that affects DTI accuracy: Tractography Errors are Cumulative Tensor Fields are Heterogeneous (Branches, Crossing, Adjacent WM Tracts) False Branching & Termination Visually Apparent DTI Artifacts => Tractography Error Look at Raw Image Data! SMALL ERRORS CAN HAVE CATASTROPHIC RESULTS!

Comparison of Tractography Algorithms Tensorlines (Weinstein et al. 1999): V out = f e 1 + (1 - f )((1 - g)v in + gD. v in ) f = 1 g = 0 streamlines f = 0 g = 1 deflection f = 0 g = 0.3 stiff deflection

How to Interpret Pretty Pictures? If Tractograms Look Realistic – Are They? Tractograms Usually Look Realistic

DT-MRI Alexander SLF CR CC CING Partial Volume Effects on Anisotropy

Catani

Tract Dispersion y x y’ x’ S x’ S y’

Tract Dispersion: Model Lazar & Alexander Neuroimage 2003

Estimating Tract Confidence Models: Lazar & Alexander Neuroimage (2003); Probabilistic Tractography: Behrens et al. MRM (2003); Parker et al. JMRI (2003) Bootstrap Tractography: Lazar & Alexander Neuroimage (2005); Jones et al. ISMRM (2004) Multisubject Tractography Analysis: Mori et al. MRM 2002; Toosy et al. 2004; Thottakara et al. 2006

DT-MRI Alexander Probabilistic Tractography Small angular perturbations are added at each ‘step’ – PICo (Parker JMRI 2003); FSL (Behrens et al. 2003) Our approach: RAVE (Random Vector) Perturbation -from a single seed multiple pathways are generated by calculating a perturbed eigenvector direction at discrete points along the trajectory (e.g., Monte Carlo Tractography) Lazar & Alexander ISMRM 2002

RAVE perturbation algorithm y’ x’ z’ 11 y’ x’ z’ 11  - degree of perturbation Lazar & Alexander ISMRM 2002

Streamline Solution  = 0.2 RAVE Solution Lazar & Alexander ISMRM 2002

Bootstrap Tractography BOOT-TRAC Bootstrap: Non-parametric distribution estimation method - iterative resampling with replacement - Efron (1979) - DTI: Pajevic & Basser (2003); Jones (2003); Hasan et al. (2004) * Resample raw DW images Boot-Trac: Requires 2+ DTI data sets from same session - tractography repeated from seed location with random resampling (Lazar & Alexander 2005, Jones 2005)) No Model Assumed – describes actual variations in data Wild Bootstrap, Residual Bootstrap – Chung 2006; Jones 2008

BOOT-TRAC Lazar & Alexander Neuroimage 2005

Multisubject Tractography Analysis Parcelatewhole-brain tracts using cortical template Co-register binarized tractography connection data between subjects Thottakara et al. Neuroimage 2006

Diffusion MRI - Alexander Average Connectivity Patterns (16 subjects) Area 4 Area 6 Area 8 ROIs Thottakara et al. Neuroimage 2006

Diffusion MRI - Alexander Composite Map – Highest Connection Probability Thottakara et al. Neuroimage 2006

Anatomical and Functional Parcellation Freesurfer Parcellation Maps 2005 Previously Available 2009 Now Using

Framework of modeling human connectome using dMRI [Zalesky et. al., 2010]

Human Connectome Average connectivity matrix for 33 participants Cortex: Left HemisphereCortex: Right Hemisphere Left Subcortical Right Subcortical Cortex: Left Hemisphere Cortex: Right Hemisphere Left Subcortical Right Subcortical

Diffusion MRI - Alexander Nonhuman Primate DTI Template 238 Macaques

Nonhuman Primate Inferior Frontal-Occipital Fasciculus top left Single Subject Average Population

Global Tractography Considerable ambiguities of tract solutions for complex fiber architecture Fiber ODF helps but ambiguities remain Global Tractography –Find ‘optimal’ tractography solutions that are consistent with regional or global measurements

Global Tractography Algorithms Graph Theory Tractography –Iturria-Medina 2007; Lifshits 2009; Zalesky 2009; Sotiropoulos 2010; Collins 2010 Min Energy Solution – 2 regions –Fletcher 2007;Cheng 2006 Particle Filtering - Zhang 2009 Gibbs Tracking – Kreher 2007 Spin Glass Model – Fillard 2009

Gibbs Tracking (Kreher, Mader and Kiselev, MRM 2007) DWI signals  Tract Model Build ‘fiber’ configurations using small line pieces Use fiber geometry to generate synthetic DW data Synthetic data compared against measured DW data and fiber configuration is adjusted to obtain new solution Iterative optimization methods are used to maximize consistency between measured data and tracts

Gibbs Tracking (Kreher, Mader and Kiselev, MRM 2007)

Complex Optimization Problem Computationally Demanding! Whole brain ~ one month Potential Payoff is High – Accurate reconstruction

Validation Critical problem – How do we know what is real? – How accurate? Synthetic & Phantom Data ‘Known’ Neuroanatomy Comparison with Tracer Studies

DT-MRI Alexander Dyrby et al. Neuroimage 2008

Alexander Lab - Funding: NIH, Dana Foundation