Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Example 1:Translate Sentences into Equations Example 2: Real-World.

Slides:



Advertisements
Similar presentations
Solving Linear Equations 3-1 Review Vocabulary Four-step problem solving plan – a generic plan for solving problems. Four-step problem solving plan.
Advertisements

2-1 Writing Equations Goals: Translate sentences into equations
Algebra 3-1 Writing Equations
Solve for w. Translate equations into sentences. You evaluated and simplified algebraic expressions. You translated between verbal and algebraic expressions.
2.1 Writing Equations.
3.1 Writing Equations Goals:
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–1) Then/Now New Vocabulary Key Concept: Addition Property of Equality Example 1: Solve by.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–1) CCSS Then/Now New Vocabulary Key Concept: Addition Property of Equality Example 1: Solve.
Basic Concepts of Algebra
3.1 Writing Equations. WARM UP Write the following verbal expressions as algebraic expressions: 1) The difference of twice a number x and 4. 2) 3 times.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–3) CCSS Then/Now New Vocabulary Key Concept: Power Property of Equality Example 1:Real-World.
LESSON 2–1 Writing Equations. Over Lesson 1–6 5-Minute Check 1 Choose the correct algebraic expression for the verbal expression twice the sum of a number.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 6–4) CCSS Then/Now New Vocabulary Key Concept: Product Property of Radicals Example 1: Simplify.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Example 1:Translate Sentences into Equations Example 2: Real-World.
Write the verbal expressions into an algebraic expression:
Splash Screen. Lesson Menu Five-Minute Check Then/Now New Vocabulary Example 1:Write a Verbal Expression Key Concept: Translating Verbal to Algebraic.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Key Concept: Functions Example 1:Domain and Range Key Concept:
Section Writing Equations. Translating Sentences into Equations Look for key words or phrases that represent “equal to”. The following all mean.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–2) CCSS Then/Now New Vocabulary Example 1:Verbal to Algebraic Expression Example 2:Algebraic.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 3) Then/Now New Vocabulary Key Concept: Distributive Property Example 1: Evaluate Numerical.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 4) Then/Now New Vocabulary Key Concept: Perimeter Example 1: Find the Perimeter Example 2:
2-1A Writing Equations Algebra 1 Glencoe McGraw-HillLinda Stamper.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–2) CCSS Then/Now New Vocabulary Example 1:Verbal to Algebraic Expression Example 2:Algebraic.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–3) CCSS Then/Now New Vocabulary Key Concept: Absolute Value Example 1:Evaluate an Expression.
2-1 Writing Equations Objectives: 1.Translate sentences into equations. 2.Translate equations into sentences. A.CED.1 Create equations and inequalities.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–2) Then/Now New Vocabulary Example 1:Solve Multi-Step Equations Example 2:Real-World Example:
You evaluated and simplified algebraic expressions. (Lesson 1–2)
Drill # 18 Write an algebraic expression for the following verbal expressions: 1. Five greater than half a number. 2. The product of seven and s divided.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 5–2) CCSS Then/Now Example 1:Real-World Example: Solve a Multi-Step Inequality Example 2:Inequality.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–2) Then/Now New Vocabulary Example 1:Verbal to Algebraic Expression Example 2:Algebraic to.
THE PRODUCT OF TIMES MULTIPLIED BY TWICE (times 2) MULTIPLICATION REVIEW OF SOLVING EQUATIONS Verbal expressions.
Splash Screen. CCSS Content Standards A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Mathematical Practices.
Lesson 3-1 Writing Equations. 5-Minute Check on Chapter 2 Transparency Evaluate 42 - |x - 7| if x = -3 2.Find 4.1  (-0.5) Simplify each expression.
Splash Screen. Over Lesson 1–2 5-Minute Check 1 A.naturals (N), wholes (W), integers (Z) B.wholes (W), integers (Z), reals (R) C.naturals (N), wholes.
Splash Screen. Lesson Menu Five-Minute Check Then/Now New Vocabulary Key Concept: Order of Operations Example 1:Evaluate Algebraic Expressions Example.
Chapter 1 Section 3. Example 3-1a Write an algebraic expression to represent 3 more than a number. Answer:
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 8) Main Idea and Vocabulary Example 1:Identify Arithmetic Sequences Example 2:Describe an Arithmetic.
2-1: Writing Equations Essential Skills: Translate sentences into equations Translate equations into sentences.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Example 1:Translate Sentences into Equations Example 2: Real-World.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–1) CCSS Then/Now New Vocabulary Key Concept: Addition Property of Equality Example 1: Solve.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–3) Then/Now New Vocabulary Key Concept: Absolute Value Example 1:Evaluate an Expression with.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–2) CCSS Then/Now New Vocabulary Example 1:Solve Multi-Step Equations Example 2:Real-World.
Over Lesson 1–2 5-Minute Check 1 A.naturals (N), wholes (W), integers (Z) B.wholes (W), integers (Z), reals (R) C.naturals (N), wholes (W), rationals (Q),
Lesson Menu Five-Minute Check (over Lesson 5–2) CCSS Then/Now Example 1:Real-World Example: Solve a Multi-Step Inequality Example 2:Inequality Involving.
Objective: Translate verbal phrases to number form. Key phrases : Addition: The sum of five and a number 5 + x Six more than a number x + 6 A number plus.
Vocabulary Tables and Expressions Evaluating Expressions Contents Translating Between Words and Expressions Combining Like Terms The Distributive Property.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–3) CCSS Then/Now New Vocabulary Key Concept: Absolute Value Example 1:Evaluate an Expression.
Writing Equations Solving Addition and Subtraction problems.
OBJECTIVE: TRANSLATE SENTENCES INTO EQUATIONS AND TRANSLATE EQUATIONS INTO SENTENCES. WRITING EQUATIONS (2-1)
Over Lesson 8–3. Splash Screen Special Products Lesson 8-4.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–2) CCSS Then/Now New Vocabulary Example 1:Verbal to Algebraic Expression Example 2:Algebraic.
Five-Minute Check (over Lesson 1-6) Mathematical Practices Then/Now
Splash Screen.
Algebra 3-1 Writing Equations
Homework: P /21-39 odd,
2-1 Writing Equations Goals: Translate sentences into equations
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Mathematical Practices Then/Now New Vocabulary
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
2-1 Notes for Algebra 1 Writing Equations.
Four Step Problem Solving Plan
Lesson 2-1 Writing Equations.
Splash Screen.
Presentation transcript:

Splash Screen

Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Example 1:Translate Sentences into Equations Example 2: Real-World Example: Use the Four-Step Problem-Solving Plan Example 3:Write a Formula Example 4:Translate Equations into Sentences Example 5:Write a Problem

Over Lesson 1–6 5-Minute Check 1 A B.2 + n + 7 C.2(n + 7) D.2 ● n ● 7 Choose the correct algebraic expression for the verbal expression twice the sum of a number and 7.

Over Lesson 1–6 5-Minute Check 2 Evaluate y 2 + (xz + y) when x = 0.4, y = 3, z =. A.15 B. C D.9

Over Lesson 1–6 5-Minute Check 3 A.5 B.2 C.1 D.0

Over Lesson 1–6 5-Minute Check 4 A.13b – 12 B.8b – 4 C.7b + 4 D.2b – 4 Rewrite (5b – 6)2 + 3b in simplest form.

Over Lesson 1–6 5-Minute Check 5 A.0 < n < 1 B.n = 0 C.n = 1 D.100 < n Find a counterexample for the conditional statement. If you square a number, the result will be greater than or equal to the original number.

Over Lesson 1–6 5-Minute Check 5 A.The square root of any whole number is a whole number. B.The absolute value of any nonzero rational number is positive. C.All functions are relations, so all relations are functions. D.All linear equations have only one solution. Which is a true statement?

CCSS Pg. 75 – 80 Obj: Learn how to translate sentences into equations and translate equations into sentences. Content Standard: A.CED.1

Why? –The Daytona 500 is widely considered to be the most important event of the NASCAR circuit. The distance around the track is 2.5 miles, and the race is a total of 500 miles. We can write an equation to determine how many laps it takes to finish the race. What is the length of the race? What is the unknown that you want to find? What do you know about the length of a lap? What operation can you perform on the number of laps to equal the length of the race?

Translate equations into sentences. Then/Now You evaluated and simplified algebraic expressions. Translate sentences into equations.

Vocabulary Formula – a rule for the relationship between certain quantities

Example 1 Translate Sentences into Equations A. Translate this sentence into an equation. A number b divided by three is equal to six less than c. Answer: b divided by three is equal to six less than c. =c – 6

Example 1 Translate Sentences into Equations B. Translate this sentence into an equation. Fifteen more than z times six is y times two minus eleven. Answer: The equation is z = 2y – 11. Fifteen more than z times six is y times two minus eleven z × 6 = y × 2 – 11

Example 1 A.6c = d + 2 B.2c = d + 6 C.c = d + 2 D.c = 6(d + 2) A. Translate this sentence into an equation. A number c multiplied by six is equal to two more than d.

Example 1 B. Translate this sentence into an equation. Three less than a number a divided by four is seven more than 3 times b. A. B. C. D.

Example 2 Use the Four-Step Problem-Solving Plan JELLY BEANS A jelly bean manufacturer produces 1,250,000 jelly beans per hour. How many hours does it take them to produce 10,000,000 jelly beans? UnderstandYou know that 1,250,000 jelly beans are produced each hour. You want to know how many hours it will take to produce 10,000,000 jelly beans. PlanWrite an equation to represent the situation. Let h represent the number of hours needed to produce the jelly beans.

Example 2 Use the Four-Step Problem-Solving Plan Solve1,250,000h = 10,000,000 Answer: It will take 8 hours to produce 10,000,000 jellybeans. 1,2500,000 × h = 10,000,000 1,250,000 times hours equals 10,000,000. Find h mentally by asking, “What number times 125 equals 1000?” h = 8 CheckIf 1,250,000 jelly beans are produced in one hour, then 1,250,000 x 8 or 10,000,000 jelly beans are produced in 8 hours. The answer makes sense.

Example 2 A.148 minutes B.30 minutes C.3552 minutes D.24 minutes A person at the KeyTronic World Invitational Type-Off typed 148 words per minute. How many minutes would it take to type 3552 words?

Example 3 Write a Formula GEOMETRY Translate the sentence into a formula. The perimeter of a square equals four times the length of a side. Answer: The formula is P = 4s. WordsPerimeter equals four times the length of a side. Formula P = 4s Perimeter equalsfour times the length of a side. VariablesLet P = perimeter and s = length of a side.

Example 3 A.A =  + r 2 B.A =  r 2 C.A = 2  r D.A = 2r +  Translate the sentence into a formula. The area of a circle equals the product of  and the square of the radius r.

Example 4 Translate Equations into Sentences A. Translate the equation into a verbal sentence. 12 – 2x = –5 12 – 2x = –5 Answer: Twelve minus two times x equals negative five. Twelve minus two times x equals negative five.

Example 4 Translate Equations into Sentences B. Translate the equation into a verbal sentence. Answer: a squared plus three times b equals c divided by six. a squared plus three times b equals c divided by 6. a 2 + 3b =

Example 4 A.Twelve minus four divided by b is negative one. B.Twelve less than four divided by b equals negative one. C.Four minus twelve divided by b equals negative one. D.Twelve divided by b minus four equals negative one. A. Translate the equation into a verbal sentence.

Example 4 A.Five plus a equals b squared plus one. B.Five times a equals twice b plus one. C.Five times a equals b squared plus one. D.The quotient of five and a equals b squared plus one. B. Translate the equation into a verbal sentence. 5a = b 2 + 1

Example 5 Write a Problem Write a problem based on the given information. f = cost of friesf = cost of burger 4(f ) – f = 8.25 Answer: The cost of a burger is $1.50 more than the cost of fries. Four times the cost of a burger minus the cost of fries equals $8.25. How much do fries cost?

Example 5 A.Consuelo is 3 inches shorter than Tiana. The product of Consuelo’s height and three times Tiana’s is How tall is Tiana? B.Consuelo is 3 inches taller than Tiana. The product of Consuelo's height and three times Tiana's is How tall is Tiana? C.Consuelo is 3 inches shorter than Tiana. The sum of Consuelo's height and three times Tiana's is How tall is Tiana? D.Tiana is 3 inches shorter than Consuelo. The product of Consuelo's height and three times Tiana's is How tall is Tiana? Write a problem based on the given information. h = Tiana's height in inches h – 3 = Consuelo's height in inches 3h(h – 3) = 8262

End of the Lesson