01/04/2006 internal report1 Properties of VCSELs (80 µm) Y. Tanguy, M. Schulz-Ruhtenberg 1, T. Ackemann SUPA, Department.

Slides:



Advertisements
Similar presentations
High power (130 mW) 40 GHz 1.55 μm mode-locked DBR lasers with integrated optical amplifiers J. Akbar, L. Hou, M. Haji,, M. J. Strain, P. Stolarz, J. H.
Advertisements

2003/04/071 Characteristic of 850-nm InGaAs/AlGaAs Vertical-Cavity Surface-Emitting Lasers Master’s thesis of Yuni Chang Speaker:Han-Yi Chu National Changhua.
Optical sources Lecture 5.
Report for China Frontier Workshop (June 22nd 2006 Beijing) Wang Zhanguo Key Lab. of Semiconductor Materials Science, Institute of Semiconductors, Chinese.
J. P. Reithmaier1,3, S. Höfling1, J. Seufert2, M. Fischer2, J
Semiconductor Optical Sources
Self-Guided Operation of Green-Pumped Singly Resonant
High Speed Circuits & Systems Laboratory Joungwook Moon
5. Lasers. Introduction to Lasers Laser Acupuncture, Laser Scalpel and Laser W/R Head.
COMPUTER MODELING OF LASER SYSTEMS
Modern Communication Systems Optical Fibre Communication Systems
1.3 Cavity modes Axial modes λ = 2d / n ν = nc / 2d n = 2d / λ
Ch3: Lightwave Fundamentals E = E o sin( wt-kz ) E = E o sin( wt-kz ) k: propagation factor = w/v k: propagation factor = w/v wt-kz : phase wt-kz : phase.
EE 230: Optical Fiber Communication Lecture 9
PHOTONICS CENTER 6/3/20031External Cavity Laser Diode Arrays - Thermal Effects Gregory Blasche Bennett Goldberg Boston University Physics Department M.
Diode laser The diode or semiconductor laser Diode lasers are extremely compact (0.3×0.2×0.1 mm), high efficiency (up to 40%), tuneable lasers, which have.
Characterization of fiber amplifiers Lecture-5. EDFA architecture Figure: EDFA architecture Characterization of DFA.
Optical Pumping Intense light source at h  (e.g. flash lamp) Excites to a metastable state to achieve population inversion With fast flashing, initial.
Resonant Faraday Rotation in a Hot Lithium Vapor Scott Waitukaitis University of Arizona, Department of Physics May 2007.
R. M. Bionta SLAC November 14, 2005 UCRL-PRES-XXXXXX LCLS Beam-Based Undulator K Measurements Workshop Use of FEL Off-Axis Zone Plate.
Semiconductor Lasers: Infrared to Blue Devices Jim Guido.
Fiber Optic Light Sources
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Spontaneous Patterns in Nonlinear Optics Netwon Institute, Cambridge August 2005 William J Firth Department of Physics, University of Strathclyde, Glasgow,
(In,Ga)As/(Al,Ga)As quantum wells on GaAs(110) R. Hey, M. Höricke, A. Trampert, U. Jahn, P. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin.
Electrons, phonons, and photons in solids Optoelectronics Group Alex L Ivanov Department of Physics and Astronomy, Cardiff University Wales, United Kingdom.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
OSC’s Industrial Affiliates Workshop, Tucson, Arizona March, 2005 GaAsSb QUANTUM WELLS FOR OPTOELECTRONICS AND INTEGRATED OPTICS Alan R. Kost, Xiaolan.
Intra-cavity Pulse Shaping of Mode-locked Oscillators Shai Yefet, Naaman Amer and Avi Pe’er Department of physics and BINA Center of nano-technology, Bar-Ilan.
The authors gratefully acknowledge the financial support of the EPSRC Nonresonant random lasing from a smectic A* liquid crystal scattering device S. M.
 Top DBR mirror replaced with CTF and chiral STF bilayers  The CTF (QWP) introduces a pi/2 retardance to compensate the polarization mismatch between.
Free Electron Lasers (I)
Statistical Description of Charged Particle Beams and Emittance Measurements Jürgen Struckmeier HICforFAIR Workshop.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
diffraction (Physical optics)
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
Uni S T.E.Sale et al., HPSP 9, Sapporo 2000, paper 27P15. Gain-Cavity Alignment in Efficient Visible (660nm) VCSELs Studied Using High Pressure Techniques.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY
Realization of a cavity-soliton laser
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
FunFACS meeting, Toulouse 1 USTRAT WP 1 Theory WP 2.
長程光纖通訊光源材料 InGaAsN 之特性介紹與近代發展 Reporter: 陳秀芬 Adviser: 郭艷光 博士 Date: 2004/01/06 92 學年度第一學期半導體雷射期末報告.
Confinement of Excitons in Strain-engineered InAs/InGaAs/GaAs Metamorphic Quantum Dots By Shaukat Ali Khattak1,2 Manus Hayne1, Luca Seravalli3, Giovanna.
UniS Plastic Optical Fibre (POF) minimum in loss at 650nm.
Objectives Demonstrate knowledge of the nature of sound waves and the properties sound shares with other waves. Solve problems relating frequency, wavelength,
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
FUNFACS Kick-off meeting Nice 1 USTRAT-Exp. FUNFACS T. Ackemann Department of Physics University of Strathclyde Glasgow, Scotland, UK Institut.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
1 Valovna dolžina (nm). Band structure: direct vs. indirect Eg 2.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Scanning electron microscopy (SEM) picture of an 8-μm-radius microdisk resonator.
1 Opto-Acoustic Imaging 台大電機系李百祺. 2 Conventional Ultrasonic Imaging Spatial resolution is mainly determined by frequency. Fabrication of high frequency.
EXAMPLE: Graph 1 shows the variation with time t of the displacement d of a traveling wave. Graph 2 shows the variation with distance x along the same.
Advanced laser and led structures, applications
High Q-factor Photonic Crystal Cavities on Transparent Polymers
Current Channeling – End View, Vertical Section, Not to scale
L7 Lasers UConn ECE /27/2017 F. Jain
Integrated Semiconductor Modelocked Lasers
Towards a Cavity Soliton Laser
IV. Laser Diode (LD) or Semiconductor Laser
A.S. Ghalumyan, V.T. Nikoghosyan Yerevan Physics Institute, Armenia
Free Electron Lasers (FEL’s)
Period Dependence of Time Response of Strained Semiconductor Superlattices XIVth International Workshop on Polarized Sources, Targets & Polarimetry Leonid.
Surface emitting diode laser
Studies of Emittance & Lifetime
Objectives: After completing this module, you should be able to:
Photon Physics ‘08/’09 Thijs Besseling
2 types of scale factor problems
Diffraction and the Wave Model
Presentation transcript:

01/04/2006 internal report1 Properties of VCSELs (80 µm) Y. Tanguy, M. Schulz-Ruhtenberg 1, T. Ackemann SUPA, Department of Physics University of Strathclyde Glasgow, Scotland, UK 1 Institut für Angewandte Physik, Universität Münster, Münster, Germany

2 Devices p mirror: 33 stacks GaAs-Al 0.88 Ga 0.12 As + metal mirror n mirror: 21.5 stacks GaAs-Al 0.88 Ga 0.12 As QW: 3 In 0.2 Ga 0.8 As, width 8 nm, barrier 10 nm substrate: 208 µm +/- 5 µm AR-coating: Si3N4, /4, n=1.89

3 Characterization UP received from UP: July 2005 order: product: ULM TN-H56OOP(80µm) wafer: 00000_156D

4 Solitary laser- Spatial characteristics Near-field 60mA Far-field 60mA  On axis emission: “broad” features at perimeter of laser.  Off-axis emission: small-scale standing wave along perimeter.  Indicates that the maximum gain is blue shifted with respect to the longitudinal cavity resonance. 28°

5 Solitary laser: LI-curves

6 Solitary lasers: Spectra On-axis emission Off-axis emission in qualitative agreement with expectations for tilted waves

7 Length scales (circular) Stripes: –Near-field 253±8 –Far-field 258±11 Length scales –Wavelength in NF: L = 0.91µm –Wave number: q = 2  /2L = /µm –Measured from FF: q = /µm NF FF T=10°C, I=56mA, ‘y‘

8 Solitary laser - lengthscales

9 Fourierspectra (circular) 80mA „x“ „y“ Fourier spectrumOptical spectrum wave number shift 0.7 /µm /20K from 2. to 1.3 /µm changes detuning from 1.3 to 3.6 nm shift about 2.1 nm/20K or 0.1 nm/K expected about 0.18 nm/K if due to shift of gain offset or does InGaAs shifts less in GaAs ?

10 Fourierspectra (circular) 80mA „x“ „y“ Fourier spectrum

11 Fourierspectra (circular) 10°C „x“ „y“ Fourier spectrumOptical spectrum (leider wird in den eps- grafiken immer geglättet und ich weiß nicht wieso...) current

12 Fourierspectra (circular) 10°C „x“ „y“ Fourier spectrum current