GEM, Micromegas detector production. detector’s dynamic range detector’s dynamic range Rui De Oliveira Catania 24/11/2011 24/11/20111Rui De Oliveira.

Slides:



Advertisements
Similar presentations
Developments of micromegas detector at CERN/Saclay
Advertisements

Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
24/05/2010Rui De Oliveira1 Resistive protections for Bulk Micromegas Rui de oliveira, Joerg Wotschack Venetios Polychronakos.
Recent achievements and projects in Large MPGDs Rui de Oliveira 21/01/2009 RD51 WG1 workshop.
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
Micro MEsh GASeous Detectors (MicroMegas)
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
General needs at CERN for special PCB’s Philippe Farthouat CERN.
July 2003American Linear Collider Workshop Cornell U. Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li,
Read-out boards Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva.
Industrial Production of MPGDs Rui de Oliveira Workshop on neutron detection with MPGD CERN October
Atsuhiko Ochi Kobe University / MAMMA collaboration 24/04/2013 RD51 mini week, WG6.
CERN PCB workshop activities
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
Fabrication techniques and industrialization of MPGDs.
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
WG1 summary P. Colas, S. Duarte Pinto RD51 Collaboration meeting in Bari October 7-10, 2010.
Atsuhiko Ochi Kobe University 25/06/2013 New Small Wheel MicroMegas Mechanics and layout Workshop.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
SPHENIX GEM Tracker R&D at BNL Craig Woody BNL sPHENIX Design Study Meeting September 7, 2011.
CERN PCB workshop CPW Rui de Oliveira on behalf of PCB workshop team 29/11/20121.
20/04/2012Rui De Oliveira1 20/04/2012. Rui De Oliveira2 30 cm x 30 cm example.
Situation with industry Rui de Oliveira RD51 CERN October
CERN Rui de OliveiraTS-DEM Rui de Oliveira TS-DEM Large size detectors CERN TS-DEM-PMT Capabilities.
15/07/2010Rui De Oliveira1 Update on large size GEM manufacturing Rui de Oliveira.
CERN workshop upgrade Aida fund Transfer to industry Rui De Oliveira 4/13/20111Rui De Oliveira.
EST-DEM R. De Oliveira 20 Dec., ‘04 Production of Gaseous Detector Elements  History of Gas Detectors in Workshop  Fabrication of GEM Detectors  Fabrication.
CERN Workshop upgrade Rui De Oliveira KOBE WG6 WG6 9/1/20111Rui De Oliveira.
1 NA58 RICH Test Beam T10 sept.2014 Fulvio Tessarotto – Stefano Levorato Partecipants: Alessandria, Aveiro, Budapest, Calcutta, Freiburg, Liberec, Prague,
Large area detectors Aida WP 9.2 RD51 WG6
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
Atsuhiko Ochi Kobe University
M. Bianco On behalf of the ATLAS Collaboration
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) CALICE/CERN 09/23/2002.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
24/05/2010Rui De Oliveira1 Resistive protections for Bulk Micromegas Rui de oliveira, Joerg Wotschack Venetios Polychronakos.
Summary of MM meeting at CEA Saclay, 25/26 Jan 2010 Some selected topics.
Resistive protections Rui de Oliveira 09/12/15
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
P. Colas on behalf of LCTPC. Strategy for Micromegas The Micromegas option is studied within the same (EUDET) facility as the other options (see R. Diener’s.
30/09/2010Rui De Oliveira1.  GEM Single mask process  Micromegas  Bulk  Classical  resistive 30/09/2010Rui De Oliveira2.
CERN Rui de OliveiraTS-DEM Rui de Oliveira TS-DEM Large size detectors practical limits based on present knowledge.
Update on GEM-based Calorimetry for the Linear Collider A.White 1/11/03 (for J.Yu, J.Li, M.Sosebee, S.Habib, V.Kaushik)
UTA Digital hadron Calorimetry using the GEM concept J.Li, A.White, J.Yu 5/30/02.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
Marcello Abbrescia RPCs for CMS during Phase II RPC rate capability M. Abbrescia, The dynamic behaviour of Resistive Plate Chambers, NIM A 533 (2004) 7–10.
 Large GEM  CMS RE1-1  Kloe  Ns2 ( No stretch No stress)  Large Micromegas  Atlas MAMA project  Large THGEM  Double phase pure argon project 
1 Fulvio TESSAROTTO CERN, 13/11/ COMPASS THGEM meeting Construction of the large size Hybrid Prototype The bulk Micromegas technology Examples of.
Suggestions for a MPGD Workshop in Frascati Rui de Oliveira 1.
GEM, Resistive M-Bulk, ThGEM detector production. Rui De Oliveira, Cosimo Cantini, Antonio Teixeira, Olivier Pizzirusso, Julien Burnens Annecy 26/04/2012.
Large size MPGD production: -GEM update -read out board infos Rui De Oliveira CERN 28/04/2009.
MPGD TECHNOLOGIES AND PRODUCTION GEMMicromegas Resistive MSGC (NEW!) Rui De Oliveira 7/12/20111Rui De Oliveira.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
Large GEM prototype production NS2 technique. Reminder NS2 technic 10 to 15mm Readout connector O-ring Drift electrode Free to slide External screws to.
A High Eta Forward Muon Trigger & Tracking detector for CMS A High Eta Forward Muon Trigger & Tracking detector for CMS Archana Sharma For CMS High Eta.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
-Stephan AUNE- RD51 BARI. Saclay MPGD workshop R&D 09/10/20101 Saclay workshop R&D for new Bulk structure.
Rui De Oliveira Vienna March 2014 Industrialisation of Micromegas detector for ATLAS Muon spectrometer upgrade 1.
Large volume GEM production Rui De Oliveira TE/MPE/EM
Thick-GEM sampling element for DHCAL: First beam tests & more
New MPGDs at CERN PCB Workshop
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Digital Calorimetry using GEM technology Andy White for UTA group
Numerical simulations on single mask conical GEMs
Development of Gas Electron Multiplier Detectors for Muon Tomography
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
A DLC μRWELL with 2-D Readout
Presentation transcript:

GEM, Micromegas detector production. detector’s dynamic range detector’s dynamic range Rui De Oliveira Catania 24/11/ /11/20111Rui De Oliveira

CERN PCB Workshop 24/11/2011Rui De Oliveira2 18 persons Building :1000 sqr meters Making PCBs since PCB -Rigid -Flex -Flex-rigid -Micovias -fine line (15um) -large size (up to 2m) -Thick film Hybrids -Thin film Hybrids -Chemical milling -Cu, Fe, Al, Au, Ag, W, Mb, Ti, Cr, Ni -MPGD -GEM/thinGEM/THGEM/RETHGEM -MSHP/Cobra -MICROMEGA/ Bulk/ Micro-BULK -RES BULK -Resistive MSGC -Low mass circuits -Multilayer flexes with aluminum strips -embedded heat sinks (carbon, graphite, metals, diamon) -Embedded components -passive -Active

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/20113Rui De Oliveira OUTLINE

24/11/2011 Rui De Oliveira 4 GEM Foil Present size 1.2m x 0.6m Future max size 2m x 0.6m Std pattern 140um pitch/70um holes

24/11/2011 Rui De Oliveira 5 Base material : Polyimide 50um + 5um on both sides Polyimide : Apical NP from company Kaneka (Japan) Supplier of the copper clad material : Nippon Mining (Japan) GEM double mask Vs GEM single Mask Same base material Hole patterning in Cu Polyimide etch Bottom electro etch Second Polyimide Etch Limited to 40cm x 40cm due to Mask precision and alignment Limited to 2m x 60cm due to Base material Equipment Double maskSingle mask

24/11/2011Rui De Oliveira6 GEM Double mask Vs GEM single Mask Similar patterns, similar behavior, same material. Angles can be adjusted in both structure (Typ value : 70um copper hole, 50um polyimide hole) Steeper angles gives lower gain but also lower charging up

COMPASS (CERN) 7 GEM double mask examples LHCb-Muon trigger (CERN) TOTEM (CERN) Window Drift electrode GEM stack Pad Plane Support & Media-Distribution Cooling Support & LV- Distribution Front-End Electronic Shielding Cover & Read-out Plane STAR experiment (US) 24/11/2011Rui De Oliveira Present double mask production quantities : around 500 GEMs/ year in average Max size: 40cm x 40cm

8 GEM Single mask examples KLOE – Cylindrical 3 GEM Detector GEM 800mm x 500mm Read-out 2D : 800mmx 500mm CMS RPC possible upgrade GEM 1.1m x 500mm Present production rate : 100 Gem /year (1.2mx0.6m) Expected rate for 2012 : 250 GEM/Year/technician 24/11/2011Rui De Oliveira

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/20119Rui De Oliveira

No spacers in active area Assembly time ½ hour for 10cm x 10cm detector (1 technician) 2 hours for 1m x 0.6m detector (1 technician) No gluing, no soldering Re opening possible GEM exchange possible Full detector Re-cleaning possible No intermediate test New GEM stretching method (NS2) advantages: 24/11/201110Rui De Oliveira

No spacer self stretching structure 24/11/2011Rui De Oliveira11 15mm Readout connector O-ring GEM attaching structure (4 pieces defining gaps) Drift electrode Free to slide External screws to adjust stretching GND gluing

24/11/2011Rui De Oliveira12 30cm x 30cm

24/11/2011Rui De Oliveira13 FRAME GEM HV DIVIDER DRIFT BOARD CLOSED DETECTOR Screws O-ring HV BNC Connector Gas connectors Read-out connectors

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/201114Rui De Oliveira

24/11/ PCB lamination Mesh deposit lamination development Rui De Oliveira Large Micromegas Largest size produced: 1.5m x 0.6m Limited by equipment BULK Technology DUPONT PC 1025 coverlay BOPP Meshes SERITEC stretching

16 Fine segmentation 1cm², thickness 8mm for ILC Hadronic calorimetry Tested in the RD51 1 kHz beam Bulk Micromegas ILC DHCAL first m 2 LAPP Annecy 24/11/201116Rui De Oliveira Pad read-out large TPC Neutrino detector 10 sqr meter in service T2K experiment Japan

Atlas CSC replacement project 24/11/2011Rui De Oliveira17 MPGD Vs Wire chambers -Faster -no need for fancy gases -lower cost -robust 1.2m x 0.6m

Resistive Bulk MicroMegas structure 24/11/2011Rui De Oliveira18

24/11/2011 Rui De Oliveira 19 Resistive strip process PCB -Good resistor uniformity -Easy to clean -Thermally robust Read-out strips or pads Copper lamination layer Resistive inverse patterning Resistive layer deposition Copper stripping

24/11/2011Rui De Oliveira20 Atlas CSC replacement project Double sided Board Resistive strip deposit Bulking Test before closingClosing

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers Compact HV dividerCompact HV divider MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/201121Rui De Oliveira

Resistive strips Bulk MicroMegas resistive anode and 2D readout 24/11/2011Rui De Oliveira We have produced : X/Y read-out U/V/W read-out Grounded mesh detectors 22

24/11/2011Rui De Oliveira23 X/Y read-out U/V/W read-out

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers Compact HV dividerCompact HV divider MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/201124Rui De Oliveira

24/11/2011Rui De Oliveira25 Normal situation in a detector for HEP: Detectors are looking for one type of particles for example: Muons Usually the main concern is rate, multiplicity, accuracy in time and position All the parameters : gain, gas etc … are tune for one type of particle Some hadrons can come and pollute the measurement Different techniques have been developed to avoid this pollution creating Sparks based on resistive layers (RPC,Micromegas,TGC) The idea is to reduce, in time and amplitude, the spark But it is impossible to get any information from heavy ionizing particle In fact you have to choose what you want to see.

Problem : How to see an event like this in a TPC? Bragg peak of 62 MeV proton Beam acquired with a water-tank system and a Markus chamber ionization chamber at CATANA facility 24/11/2011Rui De Oliveira26 In the same detector you need in theory a high gain to see the first part of the curve and a low gain at the end.

Case 1 24/11/2011Rui De Oliveira27 Set the detector gas gain at a low value In this area the signal to noise ratio Will be OK In this area the gain will be to low Lot’s of noise

Case 2 24/11/2011Rui De Oliveira28 Set the detector gas gain at a high value Sparks In this area the Signal to noise ratio will be OK

GEMGEM Large size situationLarge size situation Detector without spacersDetector without spacers Compact HV dividerCompact HV divider MicromegasMicromegas Large size situationLarge size situation X/Y and U/V/W readoutX/Y and U/V/W readout Ionization range and detector’s dynamicsIonization range and detector’s dynamics The problemThe problem Possible solutionsPossible solutions 24/11/201129Rui De Oliveira

24/11/2011Rui De Oliveira30 MM principle of operation

24/11/2011Rui De Oliveira31 End of the curve means sparks Sparks mean reaching Raether limit Raether limit is not in theory an amount of electrons but a charge density The higher the field The higher the charge density The gas is playing a big role For a given set up the Raether Limit is a constant and usually In the range of 10^6 – 10^7 electrons

24/11/2011Rui De Oliveira32 Dynamics : -primary ionization define Max gain (Raether limit) For a given set up -Ex: blue curve The detector is set at a gain of 10^4 for good S/N ratio Event creating 2 x more time electrons  ok Event creating 10 x more time electrons  spark A detector reaching high gains can have large dynamics Be careful with plots  primary ionization?

GEM principle of operation 24/11/2011Rui De Oliveira33 Amplification Diffusion Sharing between holes Amplification

Triple GEM 24/11/2011Rui De Oliveira34

Triple GEM 24/11/2011Rui De Oliveira35 Why not 4 layers?

MM/GEM 1 mm MM/GEM 2 mm PPP Gain MM Gain MM+GEM discharge rate in low momentum hadron beam: 36 => A GEM pre-amplification reduces the discharge rate by at least a factor 10 G. Charles et al., NIM A648 (2011), 174 Rui De Oliveira MM+GEM 24/11/2011

Rui De Oliveira37 Possible directions to improve the dynamic range: Decrease the maximum fields in the amplifying gaps Multiply the amplifying layer Increase the gaps between the amplifying layers Choose a gas increasing diffusion You have to fight against Raether limit  10^6 to 10^7 local charges

24/11/2011Rui De Oliveira38 Goods and bads of multiple amplification stages: It Lowers the gain at each stage High diffusion between the stages dilute charges and avoid reaching Raether limit It gives the possibility at each stage to amplify again It reduces the spacial resolution It need a high diffusion gas It needs larger gaps between amplification layers It means also higher voltages The structures will anyway have to support some sparks (MM ok, GEM be careful) (Adding resistive protection can help) It probably requires an electronics with a high dynamic range or non linear amplification

GEM single mask process is stable -Ramp up the production -Increase the size to 2m x 0.6m -Reduce the prices Large Protected Micromegas -Process nearly stabilized -increase the size to 2m x 1m Measuring Bragg peak probably needs a multiple stage gas amplification detector Conclusions and next steps 24/11/201139Rui De Oliveira

24/11/2011Rui De Oliveira40 Thank you