“Separation of cosmic-ray components in a single water Cherenkov detector" Yasser Jerónimo, Luis Villaseñor IFM-UMSNH X Mexican School of Particles and.

Slides:



Advertisements
Similar presentations
COSMIC RAY MUON DETECTION USING SCINTILLATION COUNTER AND WAVELENGTH SHIFTING FIBERS ARUNODAYA BHATTACHARYA VSRP-2009,TIFR,MUMBAI 6/7/09.
Advertisements

Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays (EAS-UAP) O. Martínez a, E. Moreno a, G. Pérez a, H. Salazar.
Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays O. MARTINEZ, H. SALAZAR, L. VILLASEÑOR * + Grupo de Estudiantes.
The Pierre-Auger PMT Test Stand Chris Jillings Feb 6, 2002.
Cosmic Rays with the LEP detectors Charles Timmermans University of Nijmegen.
DAQ System to Search for GRBs using Water Cerenkov Detectors Mario Castillo*, Gonzalo Perez*, Humberto Salazar* and L. Villaseñor ** * Facultad de Ciencias.
The Angra Neutrino Detector Detector, VETO and electronics conceptual design Laudo Barbosa (May 18th, 2006) Centro Brasileiro de Pesquisas Físicas (CBPF)
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
Particle Identification in the NA48 Experiment Using Neural Networks L. Litov University of Sofia.
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
SCIPP Summer Outreach Project July Cosmic Ray Detectors Cosmic Ray Detectors Detector Testing Detector Testing Muon Lifetime Experiment Muon Lifetime.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
Y. Karadzhov MICE Video Conference Thu April 9 Slide 1 Absolute Time Calibration Method General description of the TOF DAQ setup For the TOF Data Acquisition.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Time over Threshold Electronics for Neutrino Telescopy George Bourlis + multiplicity.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
1 A ROOT Tool for 3D Event Visualization in ATLAS Calorimeters Luciano Andrade José de Seixas Federal University of Rio de Janeiro/COPPE.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
1 N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Operation and performance of the NESTOR test detector.
Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla R. Conde 1, O. Martinez 1, T. Murrieta 1,
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
WATER CHERENKOV DETECTOR ARRAY at the University of Puebla to study cosmic rays H. Salazar, J. Cotzomi, E. Moreno, T.Murrieta, B.Palma, E.Perez, L. Villaseñor.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
1 Cosmic Rays in IceCube: Composition-Sensitive Observables Chihwa Song a, Peter Niessen b, Katherine Rawlins c for the IceCube collaboration a University.
Status and first results of the KASCADE-Grande experiment
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
TELL1 high rate Birmingham Karim Massri University of Birmingham CEDAR WG Meeting – CERN – 26/03/2012.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
PMT Readout and Floor Triggering Charge estimation using the times over the thresholds Event Building and Triggering + multiplicity George Bourlis.
Time over Threshold electronics for an underwater neutrino telescope G. Bourlis, A.G.Tsirigotis, S.E.Tzamarias Physics Laboratory, School of Science and.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Hybrid measurement of CR light component spectrum by using ARGO-YBJ and WFCTA Shoushan Zhang on behalf of LHAASO collaboration and ARGO-YBJ collaboration.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
Ground Detectors for the Study of Cosmic Ray Showers
Gamma Rays Using IceTop Hershal Pandya UDel − May 21, 2014.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
Study of Forbush decreases with a WC detector Luis Villaseñor in collaboration with Angelica Bahena UMSNH Symposium CINVESTAV-UNAM In memoriam Augusto.
Physical Description of IceTop 3 Nov IceTop Internal Review Madison, November 3-4, 2010 Physical Description of IceTop Paul Evenson, University.
Detecting Air Showers on the Ground
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
INIITIAL POINTS: –LNGS muon Angular Distribution / MACRO / - [1] –Cylindrical symmetry PMT placement Muon Energy – 17.5 GeV Optical Photon Energy – 2–5.
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
IceTop Design: 1 David Seckel – 3/11/2002 Berkeley, CA IceTop Overview David Seckel IceTop Group University of Delaware.
Forschungszentrum Karlsruhe Erice, 7th July th International School for Cosmic Rays Astrophysics Motivation Energy Reconstruction Air Fluorescence.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
 reconstruction and identification in CMS A.Nikitenko, Imperial College. LHC Days in Split 1.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Arreglo EAS-UAP para el Estudio de Rayos Cósmicos alrededor de eV Humberto, Salazar, Oscar Martínez, César Alvarez, L. Villaseñor* + Estudiantes.
 13 Readout Electronics A First Look 28-Jan-2004.
Measurement of the Response of Water Cherenkov Detectors to Secondary Cosmic-Ray Particles in the HAWC Engineering Array Using a Fast Custom-Made DAQ System.
The dynamic range extension system for the LHAASO-WCDA experiment
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
completed in austral season South Pole completed in austral season.
A.S. Lidvansky, M.N. Khaerdinov, N.S. Khaerdinov
A First Look J. Pilcher 12-Mar-2004
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
Department of Physics and Astronomy,
Separation of Cosmic-Ray Components in Water Cherenkov Detector
Amanda Heffner-Wong Wichita State University Wichita, KS
The Aperture and Precision of the Auger Observatory
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Detection of GRB with Water Cherenkov Detectors
Presentation transcript:

“Separation of cosmic-ray components in a single water Cherenkov detector" Yasser Jerónimo, Luis Villaseñor IFM-UMSNH X Mexican School of Particles and Fields Playa del Carmen November 5, 2002 H. Salazar FCFM-BUAP

Contents  Celebration in Honor of Augusto and Arnulfo  Arnulfo and Auger  Motivation to study  /EM separation  Experimental setup  Data  Composition of showers with known   Use of neural networks  Conclusions

THE MEXICAN GROUP R. López

Objectives Take part in a major UHE cosmic ray project Graduate students Popularize physics of cosmic rays Motivate and involve Mexican industry in the project R.López

Participants R. López

Students Graduated R. López ~6 refereed papers, ~60 in proceedings and ~200 talks for general public

Activities in Mexico Water Cherenkov detectors in Puebla and Morelia (ICFA Instrumentation Center), Calibration, Schmidt Optics, Simulation, Theory, Data Analysis.

Industry R.López Rotomolded Polyethylene Tanks

Use low energy showers to study  -EM separation Look here To understand over there

1.54 m diameter, 1.2 m water, 1 8” PMT, tyvek 1/5 in volume of an Auger WCD

2GS/s vs 40MS/s ns for Auger

Stopping muon at 0.1 VEM Decay electron at 0.18 VEM Crossing muon at 1 VEM Alcaraz et al., NIM 2000

Measure Charge, Amplitude,T10-50,T10-90 with good precision

LabView based DAS

Three types of triggers Vertical muons

~74 pe

Arbitrary muons Threshold of 30mV

R muon=876 Hz R sm+e=80 Hz R shower (Q>7VEM)=1 Hz Low Charge Peak=0.12 VEM Stopping muons and eletrons Not an Artifact due to V threshold

Stopping muon at 0.1 VEM Decay electron at 0.18 VEM Crossing muon at 1 VEM Qpeak=0.12 VEM Stopping Muon or electron of ~30MeV

No PMT Glass Cherenkov signal

With PMT Glass Cherenkov signal

Stopping muons and eletrons Charge Distributions for Crossing and stopping muons around 1 and.12VEM

No PMT Glass Cherenkov signal

With PMT Glass Cherenkov signal

Stopping muons and eletrons

Stopping muons and eletrons Single Muons

Stopping muons and elctrons Single Muons Separation of individual Muons and Stopping muons or electrons possible

Stopping muon or electron Q~0.12 VEM T12~3ns Isolated Muon Q~1 VEM T12~12 ns Shower Q>7 VEM T12>15ns

Data trace Q=7.8 VEM 8 muons 15 ns 4 muons, 15ns 33 “electrons” 25 ns 66 “electrons” 25 ns

Parameters for Data and Composed Events Data 8   e 4  33 e 0  66 e Charge (VEM) Amplitude (V) T10-50 (ns) T10-90 (ns)

Training and Clasification Results for a Kohonen Neural Network 4 features as input (Charge, Amplitude, T 10-50, T 1090 ) 8 Neurons in first layer 4 in second layer 2 or 3 classes as output (8 , 4  + 33e, 66e)

Training and Clasification Results for Two Classes 8  4  33 e Data 8  65%39%68% 4  33 e 35%61%32%

Training and Clasification Results for Two Classes 8  0  66 e Data 8  65%33%78% 0  66 e 35%67%22%

Training and Clasification Results for Three Classes 8   e   e 0  66 e Data 8  56%29%33%58%   e 21%35%27%15% 0  66 e 23%36%40%27%

Conclusions  Clear separation of crossing muons, PMT interactions, stopping muons and showers in a single WCD  Rise time 10-50% is linear with Q/V  Neural Networks classify composed events of muons and “electrons” better than randomly  Shower data is dominated by muons  To do: use real electron pulses from  decay and other features like power spectrum distribution. Use wider Auger showers (  s  with 25 ns sampling time.