Nervous Part C H. Biology II Adapted 2014-2015.

Slides:



Advertisements
Similar presentations
Neuroanatomy for Exam #1 Basic Brain Anatomy Lange Biology Neurobiology.
Advertisements

Central Nervous System (CNS)
THE CENTRAL NERVOUS SYSTEM
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Central Nervous System (CNS)  CNS = Brain + spinal cord  Surface anatomy includes.
1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Human Biology Sylvia S. Mader Michael Windelspecht Chapter.
The Meninges Dura mater - outermost layer Arachnoid mater - no blood vessels, in between layer (resembles a spider web) Pia mater -inner membrane, contains.
Biology 211 Anatomy & Physiology I
Functional Classification of Neurotransmitters
The Central Nervous System Part A
Chapter 9.  Central Nervous System (CNS)  Brain and spinal cord  Peripheral Nervous System (PNS) ◦ nerves.
The Central Nervous System: Part A
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
Central Nervous System (CNS) CNS –brain –spinal cord.
Central Nervous System Part 2 Cerebrum: lobes, functions, ventricles Specialization Areas Cerebral dominance Disorders.
The Nervous System.
IX. cerebrum – 83% of total brain mass
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
The Meninges Dura mater - outermost layer Arachnoid mater - no blood vessels, in between layer (resembles a spider web) Pia mater -inner membrane, contains.
The Meninges Dura mater - outermost layer Arachnoid mater - no blood vessels, in between layer (resembles a spider web) Pia mater -inner membrane, contains.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 12 The Central Nervous.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
The limbic system, or motivational system, includes:
The Brain. Divisions Cerebrum Diencephalon Brainstem Cerebellum.
The Brain. CNS – composed of the brain and spinal cord Composed of wrinkled, pinkish gray tissue Surface anatomy includes cerebral hemispheres, cerebellum,
The Central Nervous System
ELAINE N. MARIEB EIGHTH EDITION 7 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Chapter 15-1 The Brain and Cranial Nerves. The Brain The average male adult brain weighs about 3.5 lbs (1590 gms). Composed of 3 divisions: –Cerebrum.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Basic Pattern of the Central Nervous System Spinal Cord – ______________________________ surrounded by a _ – Gray matter is surrounded by _ myelinated.
Chapter 12 The Central Nervous System Part A Shilla Chakrabarty, Ph.D.
Essentials of Anatomy and Physiology Fifth edition Seeley, Stephens and Tate Slide 2.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin.
Frontal lobe Temporal lobe Occipital lobe Parietal lobe Frontal association area Speech Smell Hearing Auditory association area Vision Visual association.
Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Regions of the Brain  Cerebral hemispheres (cerebrum)  Diencephalon  Brain.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 12 The Central Nervous.
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 12 The Central Nervous.
Chapter 17 Central Nervous System
Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 12 The Central Nervous System Part A.
Central Nervous System (CNS) CNS – composed of the brain and spinal cord CNS – composed of the brain and spinal cord Cephalization Cephalization Elaboration.
Central Nervous System
Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Central Nervous System (CNS)  CNS develops from the embryonic neural tube 
The Human Brain Master Watermark Image:
Anatomy & Physiology The Nervous System. Organization of the Nervous System Central Nervous System (CNS): consists of the brain and spinal cord, which.
CEREBRUM Dr. Jamila EL Medany. Objectives At the end of the lecture, the student should be able to:  List the parts of the cerebral hemisphere (cortex,
The Brain. The Meninges (D.A.P.) Dura mater - outermost layer (tough mother) Arachnoid mater - no blood vessels, in between layer (resembles a spider.
THE BRAIN!!!!!!.
Regions of the Brain Cerebral hemispheres Diencephalon Brain stem
CNS Physiology For Bio 260. Regions and Organization of the CNS Adult brain regions 1.Cerebral hemispheres 2.Diencephalon 3.Brain stem (midbrain, pons,
The Brain.
17-1 The Central Nervous System The central nervous system (CNS) consists of the spinal cord and brain. The CNS receives and sends sensory input and coordinates.
Chapter 36 Animal Brain Organization and Function Chapter 36.
Human Anatomy & Physiology Ninth Edition PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson.
The Brain Dr Ayman G. Mustafa. CNS = Brain + Spinal cord Brain is divided into 1.Forebrain 2. Midbrain 3. Hindbrain.
PowerPoint ® Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College © Annie Leibovitz/Contact Press Images Chapter 12 Part A The Central.
Functions of Major Brain Regions
Warm-Up List and describe the 5 elements of a reflex arc.
The Central Nervous System: Part A
© 2017 Pearson Education, Inc.
Dorsal Column-Medial Lemniscal Pathways
Central Nervous System (CNS)
12 The Central Nervous System: Part A.
The Reflex Arc Reflex – rapid, predictable, and involuntary responses to stimuli Reflex arc – direct route from a sensory neuron, to an interneuron, to.
Nervous System.
Figure 17-1 Embryonic development of the human brain.
Central Nervous System
The Central Nervous System: Part A
Presentation transcript:

Nervous Part C H. Biology II Adapted 2014-2015

Cerebral Cortex Thin (2–4 mm) superficial layer of gray matter 40% of the mass of the brain Site of conscious mind: awareness, sensory perception, voluntary motor initiation, communication, memory storage, understanding Each hemisphere connects to contralateral side of the body There is lateralization of cortical function in the hemispheres

Cerebral Hemispheres Surface markings Central sulcus Separates the precentral gyrus of the frontal lobe and the postcentral gyrus of the parietal lobe Longitudinal fissure Separates the two hemispheres Transverse cerebral fissure Separates the cerebrum and the cerebellum

Parieto-occipital sulcus (on medial surface of hemisphere) Precentral gyrus Central sulcus Postcentral gyrus Frontal lobe Parietal lobe Parieto-occipital sulcus (on medial surface of hemisphere) Lateral sulcus Occipital lobe Temporal lobe Transverse cerebral fissure Cerebellum Pons Medulla oblongata Fissure Spinal cord (a deep sulcus) Gyrus Cortex (gray matter) Sulcus White matter (a) Figure 12.6a

Anterior Longitudinal Frontal lobe fissure Cerebral veins and arteries covered by arachnoid mater Parietal lobe Left cerebral hemisphere Right cerebral hemisphere Occipital lobe (c) Posterior Figure 12.6c

Left cerebral hemisphere Transverse cerebral fissure Brain stem Cerebellum (d) Figure 12.6d

Cerebral hemisphere Diencephalon Cerebellum Brain stem • Midbrain • Pons • Medulla oblongata (d) Birth Figure 12.3d

Functional Areas of the Cerebral Cortex The three types of functional areas are: Motor areas—control voluntary movement Sensory areas—conscious awareness of sensation Association areas—integrate diverse information Conscious behavior involves the entire cortex

Sensory areas and related association areas Primary motor cortex Motor areas Central sulcus Sensory areas and related association areas Primary motor cortex Primary somatosensory cortex Premotor cortex Somatic sensation Frontal eye field Somatosensory association cortex Broca’s area (outlined by dashes) Gustatory cortex (in insula) Taste Prefrontal cortex Working memory for spatial tasks Wernicke’s area (outlined by dashes) Executive area for task management Working memory for object-recall tasks Primary visual cortex Visual association area Vision Solving complex, multitask problems Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a

Posterior Motor Motor map in precentral gyrus Anterior Toes Jaw Tongue Primary motor cortex (precentral gyrus) Swallowing Figure 12.9

Posterior Sensory Anterior Sensory map in postcentral gyrus Genitals Primary somato- sensory cortex (postcentral gyrus) Intra- abdominal Figure 12.9

Sensory areas and related association areas Primary motor cortex Motor areas Central sulcus Sensory areas and related association areas Primary motor cortex Primary somatosensory cortex Premotor cortex Somatic sensation Frontal eye field Somatosensory association cortex Broca’s area (outlined by dashes) Gustatory cortex (in insula) Taste Prefrontal cortex Working memory for spatial tasks Wernicke’s area (outlined by dashes) Executive area for task management Working memory for object-recall tasks Primary visual cortex Visual association area Vision Solving complex, multitask problems Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a

Primary somatosensory cortex Cingulate gyrus Primary motor cortex Premotor cortex Central sulcus Corpus callosum Primary somatosensory cortex Frontal eye field Parietal lobe Somatosensory association cortex Prefrontal cortex Parieto-occipital sulcus Occipital lobe Processes emotions related to personal and social interactions Visual association area Orbitofrontal cortex Olfactory bulb Olfactory tract Primary visual cortex Fornix Temporal lobe Uncus Calcarine sulcus Primary olfactory cortex Parahippocampal gyrus (b) Parasagittal view, right hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8b

Brain Add in PPT Do some clinical connections/disorders with brain components

Broca’s Area Anterior to the inferior region of the premotor area Present in one hemisphere (usually the left) A motor speech area that directs muscles of the tongue Is active as one prepares to speak

Anterior Association Area (Prefrontal Cortex) Most complicated cortical region Involved with intellect, cognition, recall, and personality Contains working memory needed for judgment, reasoning, persistence, and conscience Development depends on feedback from social environment

Limbic Association Area Part of the limbic system Provides emotional impact that helps establish memories

Ventricles of the Brain Connected to one another and to the central canal of the spinal cord Lined by ependymal cells Contain cerebrospinal fluid Two C-shaped lateral ventricles in the cerebral hemispheres Third ventricle in the diencephalon Fourth ventricle in the hindbrain, dorsal to the pons, develops from the lumen of the neural tube

Lateral ventricle Septum pellucidum Anterior horn Posterior horn Inferior horn Interventricular foramen Lateral aperture Median aperture Third ventricle Inferior horn Lateral aperture Cerebral aqueduct Fourth ventricle Central canal (a) Anterior view (b) Left lateral view Figure 12.5

Regions and Organization of the CNS Spinal cord Central cavity surrounded by a gray matter core External white matter composed of myelinated fiber tracts

Central cavity Cortex of gray matter Migratory pattern of neurons Inner gray matter Cerebrum Outer white matter Cerebellum Gray matter Region of cerebellum Central cavity Inner gray matter Outer white matter Gray matter Brain stem Central cavity Outer white matter Inner gray matter Spinal cord Figure 12.4

Reflex Arc

Spinal Cord Trauma Functional losses Parasthesias Sensory loss Paralysis Loss of motor function Flaccid paralysis—severe damage to the ventral root or ventral horn cells Impulses do not reach muscles; there is no voluntary or involuntary control of muscles Muscles atrophy

Spinal Cord Trauma Spastic paralysis—damage to upper motor neurons of the primary motor cortex Spinal neurons remain intact; muscles are stimulated by reflex activity No voluntary control of muscles

Spinal Cord Trauma Transection Cross sectioning of the spinal cord at any level Results in total motor and sensory loss in regions inferior to the cut Paraplegia—transection between T1 and L1 Quadriplegia—transection in the cervical region

Poliomyelitis Destruction of the ventral horn motor neurons by the poliovirus Muscles atrophy Death may occur due to paralysis of respiratory muscles or cardiac arrest Survivors often develop postpolio syndrome many years later, as neurons are lost

Amyotrophic Lateral Sclerosis (ALS) Also called Lou Gehrig’s disease Involves progressive destruction of ventral horn motor neurons and fibers of the pyramidal tract Symptoms—loss of the ability to speak, swallow, and breathe Death typically occurs within five years Linked to glutamate excitotoxicity, attack by the immune system, or both

Multiple Sclerosis (MS) An autoimmune disease that mainly affects young adults Symptoms: visual disturbances, weakness, loss of muscular control, speech disturbances, and urinary incontinence Myelin sheaths in the CNS become nonfunctional scleroses Shunting and short-circuiting of nerve impulses occurs Impulse conduction slows and eventually ceases

Multiple Sclerosis: Treatment Some immune system–modifying drugs, including interferons and Copazone: Hold symptoms at bay Reduce complications Reduce disability

Developmental Aspects of the CNS CNS is established during the first month of development Gender-specific areas appear in both brain and spinal cord, depending on presence or absence of fetal testosterone Maternal exposure to radiation, drugs (e.g., alcohol and opiates), or infection can harm the developing CNS Smoking decreases oxygen in the blood, which can lead to neuron death and fetal brain damage

Developmental Aspects of the CNS Age brings some cognitive declines, but these are not significant in healthy individuals until they reach their 80s Shrinkage of brain accelerates in old age Excessive use of alcohol causes signs of senility unrelated to the aging process