G-2 readout electronics and DAQ Osamu SASAKI (KEK) 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)1.

Slides:



Advertisements
Similar presentations
20/Oct./2000 CF IEEE NSS 2000 at Lyon,France 1 An MWPC Readout Chip for High Rate Environment Introduction ASIC Structure & Fabrication ASIC Evaluation.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
Electronics for the INO ICAL detector B.Satyanarayana Tata Institute of Fundamental Research For INO collaboration.
RPC Electronics Status Overall system TDC –Digitizing frequency issue (determine the bin size of the TDC value) Discriminator test result Trigger module.
July 10, 2008 PHENIX RPC review C.Y. Chi 1 RPC Front End Electronics On chamber discriminator  The strips  The CMS discriminator chips  The discriminator.
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
CARIOCA (Cern and RIO Current Amplifier). The CARIOCA chip has 8 binary output, therefore DIALOG has 16 PCH as input channels and has up to 8 LCH as output.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
Mark Raymond /12/051 Trip-t & TFB Trip-t schematics signals and registers operation SiPM connection TFB block diagram functionality.
September 8-14, th Workshop on Electronics for LHC1 Channel Control ASIC for the CMS Hadron Calorimeter Front End Readout Module Ray Yarema, Alan.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
CDC readout system status MT 2009 July 7. BELLE II CDC readout electronics CDC.
First ideas for the Argontube electronics Shaper, simulations Block Diagram for analog path Delta Code Data Reduction Bus system, Controller Max.
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
Front-end readout study for SuperKEKB IGARASHI Youichi.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
NUMI Off Axis NUMI Off Axis Workshop Workshop Argonne Meeting Electronics for RPCs Gary Drake, Charlie Nelson Apr. 25, 2003 p. 1.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Mar. 18, 2009 HAPD ASIC Status Super KEKB Meeting 1 S.Nishida (KEK) S. Nishida HAPD ASIC Status Super KEKB Meeting Mar. 18, 2009 KEK.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
Meeting from Mai 10th at ETHZ ArgonTube electronics Charge amplifier or linear amplifer ? Front end module Max Hess.
Status of the n-XYTER testing Knut Solvag, Gerd Modzel, Christian Schmidt, Markus Höhl, Andrea Brogna, Ullrich Trunk, Hans-Kristian Soltveit CBM.
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
Fermilab Silicon Strip Readout Chip for BTEV
Pixel detector development: sensor
1 UA9 telescope first ideas Rome – 12/3/2010 Mark Raymond –
TPC electronics Status, Plans, Needs Marcus Larwill April
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
Juin 1st 2010 Christophe Beigbeder PID meeting1 PID meeting Electronics Integration.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Readout controller Block Diagram S. Hansen - CD-1 Lehman Review1 VXO Ø Det Links to 24 SiPM Front End Boards Clock Event Data USB ARM uC A D Rd Wrt 100Mbit.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
SVD FADC Status Markus Friedl (HEPHY Vienna) Wetzlar SVD-PXD Meeting, 5 February 2013.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
KLOE II Inner Tracker FEE
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
LHC1 & COOP September 1995 Report
Calorimeter Mu2e Development electronics Front-end Review
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
Iwaki System Readout Board User’s Guide
DCH FEE 28 chs DCH prototype FEE &
Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3
Status of n-XYTER read-out chain at GSI
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
RPC Front End Electronics
PID meeting Mechanical implementation Electronics architecture
RPC Electronics Overall system diagram Current status At detector
Presentation transcript:

g-2 readout electronics and DAQ Osamu SASAKI (KEK) 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)1

Time sequence of the operation The muon beam spill comes every 40 ms (25 Hz). The duration of the measurement is 33  sec. The very high instantaneous event rate requires fine granularity and timing resolution (fine timing slice) for the detectors and front-end electronics in order to reduce the probability of the signal pile-up. Binary readout : ASD + 5 ns sampling (5 ns resolution TDC) + Buffer Memory + Readout The long interval (40 ms) between the measurement and the subsequent spill enables to send all the data after their proper processing to a backend DAQ system. 40 ms 2 ns 33  s 39 ms Beam Injection Measurement Data Processing and Transmission 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)2

BufferTx Rx Buffer ASD Test CTRL/Mon. Tx Rx Buffe r TxTx Rx Buffe r TCP/IP CTRL Mon. Tx Rx Buffer Tx RxBuffer TCP/IP CTRL Mon. Frontend Board (on detector) Beam Injection Si Strip Readout Board (VME) Gigabit Ethernet Switch Timing CTRL / Mon. (VME) GPS CLK Generator CTRL/Mon. PC Farm CLK, START BufferTx Rx Buffer ASD Test CTRL/Mon. BufferTx Rx Buffer ASD Test CTRL/Mon. Buffer Tx Rx Buffer ASD Test CTRL/Mon. CLK START CLK START CLK (100MHz) 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)3

Block diagram of the front-end board DAQ mode – Tx : Data transmission – Rx : Receive “Real time signals” ; CLK, Start/Stop, Test Pulse, Reset Control mode – Tx / Rx : System configuration and monitoring One of operation modes is alternatively selected. Hit signal sampling every 5 ns Spill Buffer Processor Zero-suppress Spill ID Tx Rx Controller Real Time DAQ Signals System configuration monitoring DAC CLK Start/Stop CLK, Start/Stop, Test Pulse DAQ/Control Configure / monitor ASD Vth Serializer De-serializer Vth 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)4 Front-end ASIC

Support from Electronics System Group (E-SYS:KEK) Manobu Tanaka, Tomohisa Uchida and Masahiro Ikeno – Frontend ASIC development and boards/module design. – Valuable advices for system design and mass-production Frontend ASIC – UMCJ (United Microelectronics Cooperation Japan) – UMC 0.25  m CMOS process – First Prototypes are separate chips (4mm x 4mm) with analog and digital parts – Prototype chips will be available in summer ASD – Preamp + Shaper + Comparator + DAC for Vth Prototype 1 : preamp + shaper + peak-hold + mux – Some circuit configurations will be designed Cascode and folded cascode 5ns sampling (TDC)/Readout – Hit signal sampling every 5 ns – 8k words depth -> 41  200MHz 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)5

Front-end ASIC Sensor Double Sided Silicon Strip Detector (DSSD), 320  m thick AC-coupling, most probable charge 25k e-h pairs (4 fC), C d ~ 30 pF FunctionAmplifier-Sharper-Discriminator (ASD) + TDC + data formatting / readout # of channels128 channels Gain of amp.> 50 mV/MIP, both negative and positive charge inputs Peaking time fast pulse shaping (  < 50 nsec ) Threshold voltageIndividual or offset compensation circuits TDCLeading edge of hit signal, dead-time-less data recording TDC resolution5 nsec Time walk<3nsec Dynamic range 33  sec ReadoutSerial output 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)6

ASIC block diagram 5ns stamp DiscriDiscri PreampShaperPreampShaper CompressorSerializerCompressorSerializer DACDAC ControllerController Test pulse,Monitor,Vth,DiscriENB FPGAFPGA Analog TEG Analog TEG Digital TEG Digital TEG 7

Analog TEG(test element group) 4mmx4mm test pulse in VthVth Shut down Polarity selection ComparatorEnableComparatorEnable Reference voltage DAC control 4bit analog monitor enable enable InputInput MonitoroutputMonitoroutput DigitaloutputDigitaloutput RfRf Rf/5Rf/5 CfCf 5Cf5Cf R/5R/5 RR CfCf 25/05/20128

71mV/MIP Transient response -0.5MIP~-5MIP (0.5MIP step ) Shaper out Preamp out 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)9

Shaper out Preamp out Discri. out input -1MIP 5 times(100ns period) 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)10

Analog TEG parameterspecsimulation Gain>50mV/MIP~70mV/MIP pulse width<100nsec peaking time CR(RC) 2 ~35n sec Dynamic range ±5MIP > ±5MIP Noise<3000e<2500e DAC4bit10mV/bit # of ch12832 Time walk<<5nsec<5nsec PWD ー ~1mW/ch 60um pitch layout 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)11

Digital TEG(test element group) 4mmx4mm Comparator out From analog part Comparator out From analog part MemorywriteControllerMemorywriteController Two phase clk generator Memory 4k words Memory Memory Memory Slow Control I/F Zero data suppressor SerializerSerializer Write start (T0 timing) Write start (T0 timing) MemoryreadControllerMemoryreadController 200MHz200MHz 100MHz100MHz 5nsecx8k 〜 41usec Readout start 4-line serial(SiTCP) 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)12

parameterspec System clock 100MHz two phase Sampling clock 200MHz Event buffer 41μsec Serial I/F to FPGA 100 MHz Slow control compatible with the SiTCP # of ch 16 Others circuits for debugging area4mmx4mm Digital TEG Verilog-HDL and Standard-cell(ARM Ltd.) 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 13

Schedule for ASIC development Project start Design(incl. Layout) completed Evaluation until 2012 summer Next tape out (128ch Prototype) in 2012 JFY 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)14

Silicon sensors and frontend board 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)15

Mechanical Layout 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 25/05/201216

HV and LV distribution LVPS Floating (on +HV) HVPS DC/DC Si Sensor GND-HV +HV GND-Si Frontend GND-LV +LV +HV-Si GND-FE Signal LVPS FrontendDC/DC +LV GND-LV P N N P Signal GND ON/OFF Current monitor AC coupling Vmax < 20V AC coupling Vmax < 20V 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)17

HV/LV supply scheme Individual HV/LV Power Supplies to each Si sensor and each frontend board are not a tolerable solution. – Not only financial but also physical (# of the connections) – Common HV supply with capability of individual current monitoring and ON/OFF – Direct LV feed to frontend electronics is not realistic. ~ 2.5V in total (2mA/ch x 500k = 1kA) Voltage drop in cables – DC/DC converters are one of solutions 36V converted to 2.5V near the detector. Operation in magnetic field (3T)? Pollution to magnetic field ? DSSD – One side is +HV or –HV, and another side is GND signals from both sides. LVPS for signals from HV biased side should be floating and on HV. – The max. rating of the AC coupling is less than 20 V. “Individual ON/OFF of HV” and “common floating LVPS”  any solution ? SSSD – One side is +HV or –HV, and another side is GND – Signals from a GND side. – Common GND for HV and LV. 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)18

Vacuum and cooling All the frontend electronics and sensors are in the vacuumed chamber. – Selection of electronics parts, which can be used in vacuum. – No pollution to environment (magnetic field and no electric field) Cooling using some coolant and heat conducting materials. – 5 mW /ch x 400k ch = 2 kW Size of the chamber and total power dissipation are compatible with an oven in a kitchen. Solid R&D works 25/05/20122nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE)19

Backup 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 20

Noise Comparator input 1/f noise Thermal noise Cdet=30pFCdet=30pF 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 21

ASD-FCGB IRF(uA)IRF4P(uA)noise/gainENC / / / / / / Qinjection -Qinjection 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 22

time walk v.s. Vth noise=13mV signal=86.3mV 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 23

Analog TEG parameterspecsimulation Gain>50mV/MIP~70mV/MIP pulse width<100nsec peaking time CR(RC) 2 ~35n sec Dynamic range ±5MIP > ±5MIP Noise<3000e<2500e DAC4bit10mV/bit # of ch12832 Time walk<<5nsec<5nsec PWD ー ~1mW/ch 60um pitch layout 25/05/2012 2nd Workshop on Muon g-2 and EDM in the LHC Era (LPNHE) 24

Rx Tx INPUT FIFO DAQ/CTRL Rx Tx INPUT FIFO DAQ/CTRL INPUT FIFO SPILL ID COUNTER STARTSpill CNT Reset TCP/IP OUTPUT FIFO Frontend Control & Monitor VME Protocol START, Test Pulse Trigger, Spill CNT Reset, RESET EXT / INT Spill Event Builder 100 MHz Clock VME CH0 CH7 Run info reg. External Inputs FPGA + CPLD PC from/to FE Boards Destination

Beam Injection Test Pulse Trigger Spill CNT Reset RESET 100 MHz CLK /Q D D Q VME Protocol START Test Pulse Trigger Spill CNT Reset RESET Rx Tx INPUT FIFO SPILL ID COUNTER TCP/IP OUTPUT FIFO External Inputs Fanout & to Readout Boards TDC Start Stop START Beam Injection 100 MHz CLK CLK Spill CNT Reset Real Time Signal Monitor & Control PC Real Time Signals from SW INPUT FIFO FE Board Emulation Real Time Signals FPGA + CPLD from Readout Board

HV / LV distributor box sensor Current monitor DC/DC frontend ON/OFF 36V HV 2.5V FPGA Control/monitor

Frequency Standard