Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of a MicroRNA/TP53 Feedback Circuitry.
Advertisements

Date of download: 6/22/2016 Copyright © 2016 American Medical Association. All rights reserved. From: β-Secretase Protein and Activity Are Increased in.
Date of download: 6/24/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Interleukin 6 and Interleukin 8 as Potential Biomarkers.
Date of download: 6/25/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Implication of SSAT by Gene Expression and Genetic.
Date of download: 7/7/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Functional NPY Variation as a Factor in Stress Resilience.
Date of download: 7/8/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Levels of β-Secretase (BACE1) in Cerebrospinal Fluid.
Date of download: 7/9/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Alternative Splicing, Methylation State, and Expression.
Date of download: 9/19/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Germline Epigenetic Regulation of KILLIN in Cowden.
Date of download: 11/12/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Influence of Child Abuse on Adult DepressionModeration.
Copyright © 2003 American Medical Association. All rights reserved.
Fig. 7 Localization of the element(s) responsible for the transcriptional suppression by PPAR-γ. A, Rat VSMCs were transfected with either −1969/+104-luc,
Figure 5. Both IDs Are Capable of Functionally Interacting with the TR on Positive TREs CV-1 cells were cotransfected with 1.7 μg of LYS (A) PAL (B), or.
Okadaic-Acid-Induced Inhibition of Protein Phosphatase 2A Produces Activation of Mitogen-Activated Protein Kinases ERK1/2, MEK1/2, and p70 S6, Similar.
by Bimal K. Ray, Arvind Shakya, James R. Turk, Suneel S
Serotonin Transporter Promoter Gain-of-Function Genotypes Are Linked to Obsessive- Compulsive Disorder  Xian-Zhang Hu, Robert H. Lipsky, Guanshan Zhu,
Novel Cis Element for Tissue-Specific Transcription of Rat Platelet-Derived Growth Factor β-Receptor Gene by Yasunori Takata, Yutaka Kitami, Tomikazu Fukuoka,
W. L. Parker, M. D. , Ph. D. , K. W. Finnson, Ph. D. , H. Soe-Lin, B
Volume 118, Issue 4, Pages (April 2000)
FOG-1 represses GATA-1-dependent FcϵRI β-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice by Keiko Maeda, Chiharu.
Matrix Metalloproteinase 9 Expression is Coordinately Modulated by the KRE-M9 and 12-O-Tetradecanoyl-Phorbol-13-Acetate Responsive Elements  Takashi Kobayashi,
Volume 76, Issue 7, Pages (October 2009)
Requirement of heat shock protein 90 in mesangial cell mitogenesis
The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation  Rixun Fang, Nilda A. Santiago, Lynne C. Olds,
by Milind C. Mahajan, and Sherman M. Weissman
Volume 136, Issue 5, Pages (May 2009)
Volume 135, Issue 5, Pages e3 (November 2008)
IFN-γ Upregulates Expression of the Mouse Complement C1rA Gene in Keratinocytes via IFN-Regulatory Factor-1  Sung June Byun, Ik-Soo Jeon, Hyangkyu Lee,
Volume 16, Issue 6, Pages (December 2004)
Sp1 Is Required for Glucose-Induced Transcriptional Regulation of Mouse Vesicular Glutamate Transporter 2 Gene  Tao Li, Liqun Bai, Jing Li, Suzu Igarashi,
Volume 54, Issue 1, Pages (July 1998)
Rose-Anne Romano, Barbara Birkaya, Satrajit Sinha 
17β-estradiol, Progesterone, and Dihydrotestosterone Suppress the Growth of Human Melanoma by Inhibiting Interleukin-8 Production  Naoko Kanda, Shinichi.
The mRNA for Protease Nexin-1 is Expressed in Human Dermal Papilla Cells and its Level is Affected by Androgen  Tadashige Sonoda, Yuji Asada, Sotaro Kurata,
Transcriptional Control of the Mouse Col7a1 Gene in Keratinocytes: Basal and Transforming Growth Factor-β Regulated Expression  Michael Naso, Jouni Uitto,
Volume 136, Issue 4, Pages (April 2009)
Yin-Yang 1 Negatively Regulates the Differentiation-Specific Transcription of Mouse Loricrin Gene in Undifferentiated Keratinocytes  Xuezhu Xu, Yasuhiro.
Volume 22, Issue 2, Pages (February 2014)
Regulation of α-Synuclein Expression by Poly (ADP Ribose) Polymerase-1 (PARP-1) Binding to the NACP-Rep1 Polymorphic Site Upstream of the SNCA Gene  Ornit.
Microtubule-Targeted Drugs Inhibit VEGF Receptor-2 Expression by both Transcriptional and Post-Transcriptional Mechanisms  Markus Meissner, Andreas Pinter,
Volume 62, Issue 3, Pages (September 2002)
Transcriptional Regulation of ATP2C1 Gene by Sp1 and YY1 and Reduced Function of its Promoter in Hailey–Hailey Disease Keratinocytes  Hiroshi Kawada,
Histamine Inhibits the Production of Interferon-induced Protein of 10 kDa in Human Squamous Cell Carcinoma and Melanoma  Naoko Kanda, Shinichi Watanabe 
Noritaka Oyama, Keiji Iwatsuki, Yoshimi Homma, Fumio Kaneko 
Naoko Kanda, Shinichi Watanabe  Journal of Investigative Dermatology 
Dysregulated Activation of Activator Protein 1 in Keratinocytes of Atopic Dermatitis Patients with Enhanced Expression of Granulocyte/Macrophage-Colony.
Ketoconazole Suppresses Prostaglandin E2-Induced Cyclooxygenase-2 Expression in Human Epidermoid Carcinoma A-431 Cells  Naoko Kanda, Dr., Shinichi Watanabe 
Vitamin D activates type A natriuretic peptide receptor gene transcription in inner medullary collecting duct cells  S. Chen, K. Olsen, C. Grigsby, D.G.
Halofuginone, an Inhibitor of Type-I Collagen Synthesis and Skin Sclerosis, Blocks Transforming-Growth-Factor-β-Mediated Smad3 Activation in Fibroblasts 
17β-estradiol Inhibits the Production of RANTES in Human Keratinocytes
Christina A. Gurnett, Farhang Alaee, Lisa M. Kruse, David M
MyoD Targets TAF3/TRF3 to Activate Myogenin Transcription
Volume 63, Issue 6, Pages (June 2003)
Volume 2, Issue 1, Pages (July 1998)
Regulation of the Expression of Peptidylarginine Deiminase Type II Gene (PADI2) in Human Keratinocytes Involves Sp1 and Sp3 Transcription Factors  Sijun.
Volume 90, Issue 4, Pages (August 1997)
Volume 55, Issue 5, Pages (May 1999)
RNA Polymerase II Activity of Type 3 Pol III Promoters
Interferon-γ-Mediated Growth Regulation of Melanoma Cells: Involvement of STAT1- Dependent and STAT1-Independent Signals  Anja Bosserhoff  Journal of Investigative.
Lawrence M. Pfeffer, Andrzej T. Slominski 
Defining the Regulatory Elements in the Proximal Promoter of ΔNp63 in Keratinocytes: Potential Roles for Sp1/Sp3, NF-Y, and p63  Rose-Anne Romano, Barbara.
Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor by Gauthami Jalagadugula, Lawrence.
Expression of SENP2 mRNA is regulated by palmitate-induced NF-κB activation. Expression of SENP2 mRNA is regulated by palmitate-induced NF-κB activation.
Naoko Kanda, Shinichi Watanabe  Journal of Investigative Dermatology 
Bart A. Jessen, Marjorie A. Phillips, Robert H. Rice 
Endogenous GATA Factors Bind the Core Sequence of the tetO and Influence Gene Regulation with the Tetracycline System  David J. Gould, Yuti Chernajovsky 
Volume 4, Issue 4, Pages (October 1999)
Hepatocyte Growth Factor/Scatter Factor (HGF/SF) Induces Vascular Permeability Factor (VPF/VEGF) Expression by Cultured Keratinocytes  Jens Gille, Mona.
Volume 129, Issue 2, Pages (August 2005)
Characterization of the complex formed at the Fra-1 RCE1.
Acetylation Regulates Transcription Factor Activity at Multiple Levels
Presentation transcript:

Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human Tryptophan Hydroxylase 2 Gene With Risk for Bipolar Disorder in Han Chinese Arch Gen Psychiatry. 2007;64(9): doi: /archpsyc Representation of the linkage disequilibrium structure in the tryptophan hydroxylase 2 gene (TPH2) in control subjects (A) and patients with bipolar disorder (B). Pairwise linkage disequilibrium of the TPH2 single-nucleotide polymorphisms was plotted using the graphical overview of linkage disequilibrium program ( with the absolute standardized linkage disequilibrium coefficient (D′) obtained in patients with bipolar disorder and matched healthy control subjects. Red indicates complete linkage (D′, ±1); blue, no linkage (D′, 0). The 6 loci are numbered in order from the 5′ to 3′ orientation. Figure Legend:

Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human Tryptophan Hydroxylase 2 Gene With Risk for Bipolar Disorder in Han Chinese Arch Gen Psychiatry. 2007;64(9): doi: /archpsyc Effect of tryptophan hydroxylase 2 gene (TPH2) promoter polymorphism on gene expression in the reporter system. A, Promoter activity of the TPH2 T − 703G and T − 473A polymorphisms. The human neuroblastoma cell lines SH-SY5Y and IMR-32 were transfected with plasmid constructs containing different haplotype combinations for single-nucleotide polymorphisms (SNPs) T − 703G and T − 473A. Luciferase activities were measured in luciferase units relative to the empty vector (pGL3-B). Data were normalized to protein concentration (in micrograms) and then analyzed using the 2-sample ttest. All assays were performed in triplicate, and the levels of promoter activity are expressed as mean ± SD. Although luciferase activities were similar between haplotype TT, TA, and GT transfectants, significant differences were detected for the comparisons between haplotype GA transfectants and the others (P =.002 for SH-SY5Y; P =.001 for IMR-32). *P <.01. B, Electrophoretic mobility shift analysis investigating the − 473 T/A and − 703 T/G polymorphisms. We incubated 10 μg of nuclear extract from IMR-32 cells with biotin- labeled oligonucleotide probes alone (lanes 2, 7, 11, and 16), in the presence of anti–Pou domain class 3 transcription factor 2 (anti- POU3F2) antibody (lanes 3 and 12) or mouse IgG (lanes 4 and 13) as nonspecific control specimens, or with increasing amounts of unlabeled − 473T (lanes 5-6), − 473A (lanes 8-9), − 703T (lanes 14-15), and − 703G (lanes 17-18) oligonucleotides. Probe incubated in the absence of nuclear protein is shown in lanes 1 and 10. Samples were loaded on a 6% native acrylamide gel. The positions of the complexes C1, C2, and C3 and that of the probe are indicated by solid and open arrows, respectively. Figure Legend:

Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human Tryptophan Hydroxylase 2 Gene With Risk for Bipolar Disorder in Han Chinese Arch Gen Psychiatry. 2007;64(9): doi: /archpsyc The C2755A polymorphism of the tryptophan hydroxylase 2 gene (TPH2) is highly conserved across species and affects TPH2 protein function. A, Sequence alignment of the N-terminal region of the TPH2 protein across species. Sequences include human (Homo sapiens; gi: ), chimpanzee (Pan troglodyte; gi: ), cow (Bos taurus; gi: ), rat (Rattus norvegi; gi: ), mouse (Mus musculus; gi: ), chicken (Gallus gallus; gi: ), dog (Canis familiars; gi: ), torafugu (Takifugu rubripes; gi: ), and zebra fish (Danio rerio; gi: ). Sequences were aligned using the MultAlin program (available at with the hierarchical clustering method. Numbers indicate positions of amino acids. Red and blue indicate that conservation at a given position is higher than 80% or ranges from 50% to 80%, respectively. The serine residuals are highly conserved across species except in the rodent (arrowhead). B, Serotonin levels in SH-SY5Y cells expressing TPH2_41Y were lower than in SH-SY5Y cells expressing TPH2_41S. The human neuroblastoma cell line SH-SY5Y was transfected with plasmids constructed with different TPH2C2755A alleles or with an empty vector. Serotonin levels in SH-SY5Y cells with different constructs were measured in the medium of transfected cells using an enzyme-linked immunosorbent assay for serotonin. Experiments were performed using independently prepared plasmid in triplicate. Similar levels of Myc-tagged TPH2_41S and TPH2_41Y proteins were expressed in transfected cells as indicated by Western blot analysis using anti-Myc and anti-actin antibodies. The basal amount of serotonin was first subtracted, and then the data were analyzed using the 2- sample t test. The mean ± SD serotonin expression of TPH2_41Y–transfected cells was approximately 40% lower than that of TPH2_41S–transfected cells. *P =.002. Figure Legend:

Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human Tryptophan Hydroxylase 2 Gene With Risk for Bipolar Disorder in Han Chinese Arch Gen Psychiatry. 2007;64(9): doi: /archpsyc Both of the tryptophan hydroxylase genes (TPH1 and TPH2) are expressed in various regions of the human brain. Eight complementary DNA libraries made from various sections of the human brain—total brain, amygdala, cerebellum, cerebral cortex, frontal lobes, hippocampus, medulla oblongata, and pons—were used to assess the relative expression level of TPH1 and TPH2. The expression levels of TPH1 and TPH2 were measured using quantitative real-time polymerase chain reaction with the human brain complementary DNA panel. The relative expression levels were calculated by normalizing the value of TPH1 or TPH2 messenger RNA (mRNA) to the value of 18S rRNA (the ΔCt). The ΔCt in each panel was then standardized using the ΔCt in the brain (the ΔΔCt). The expression levels are represented by 2 (−ΔΔCt) in the dual y-axis, and the axes on the left and right indicate the relative expression levels of TPH1 and TPH2, respectively. In both cases, the expression levels in the brain are equal to 1 and the TPH2 expression is 1.18-fold more abundant than TPH1 in the brain. All measurements were performed in triplicate and analyzed using 1-way analysis of variance. *P <.05. †P <.01. Figure Legend:

Date of download: 7/2/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Association of Functional Polymorphisms of the Human Tryptophan Hydroxylase 2 Gene With Risk for Bipolar Disorder in Han Chinese Arch Gen Psychiatry. 2007;64(9): doi: /archpsyc Interaction between the tryptophan hydroxylase genes (TPH1 and TPH2) increased the risk of bipolar disorder (BPD). The odd ratios between different comparisons were plotted using a 3-dimensional plot. The y-axis is the scale of odds ratios that indicates gene effects. The x-axis separates all subjects into 2 groups: those with the TPH2-TAG haplotype and those with all other haplotypes. The z-axis divides these subgroups according to their TPH1 T-346G polymorphism. The data demonstrated that TPH1 interacts with TPH2 to modify the risk of BPD. Figure Legend: