Essential Parts of the Diffractometer X-ray Tube: the source of X Rays Incident-beam optics: condition the X-ray beam before it hits.

Slides:



Advertisements
Similar presentations
24.6 Diffraction Huygen’s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line.
Advertisements

X-ray diffraction – the experiment
X-RAY DIFFRACTION (XRD)
IX. X-ray diffraction 9-1. Production of X-ray Vacuum, thermionic emission, high voltage,
Bragg’s Law nl=2dsinΘ Just needs some satisfaction!! d Θ l
1 SpectroscopIC aNALYSIS Part 7 – X-ray Analysis Methods Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water Studies Centre &
Chap 8 Analytical Instruments. XRD Measure X-Rays “Diffracted” by the specimen and obtain a diffraction pattern Interaction of X-rays with sample creates.
Lecture 20 X-Ray Diffraction (XRD)
Lecture 21 (12/11/2006) X-Ray Diffraction (XRD) Theory and Analytical Technique.
Crystal diffraction Laue Nobel prize Max von Laue
Experimentally, the Bragg law can be applied in two different ways:
Plan : lattices Characterization of thin films and bulk materials using x-ray and electron scattering V. Pierron-Bohnes IPCMS-GEMME, BP 43, 23 rue du Loess,
Interference and Diffraction
CHAPTER 3: CRYSTAL STRUCTURES X-Ray Diffraction (XRD)
Determination of Crystal Structures by X-ray Diffraction
X-Ray Analytical Methods X-Ray Analytical Methods X-ray radiography is used for creating images of light-opaque materials relies on the relationship between.
Internal – External Order We described symmetry of crystal habit (32 point groups) We also looked at internal ordering of atoms in 3-D structure (230 space.
X-Ray Crystallography The most important technique for mineralogy The most important technique for mineralogy Direct measurement of atomic arrangement.
X-Ray Diffraction Background and Fundamentals
CHAPTER 2 : CRYSTAL DIFFRACTION AND PG Govt College for Girls
Crystallography and Diffraction Techniques Myoglobin.
Chem Single Crystals For single crystals, we see the individual reciprocal lattice points projected onto the detector and we can determine the values.
I am not an expert on any of this!
X-Ray Diffraction. The XRD Technique Takes a sample of the material and places a powdered sample which is then illuminated with x-rays of a fixed wave-length.
Yat Li Department of Chemistry & Biochemistry University of California, Santa Cruz CHEM 146C_Experiment #3 Identification of Crystal Structures by Powder.
X-ray diffraction to identify phases
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Tuesday, May 15 - Thursday, May 17, 2007
X-ray Diffraction (XRD) and Forensic Geology X-ray diffraction pattern for goethite X-ray diffractometer (XRD) laboratory.
X-Ray Diffraction ME 215 Exp#1. X-Ray Diffraction X-rays is a form of electromagnetic radiation having a range of wavelength from nm (0.01x10 -9.
Submitted By:- Nardev Kumar Bajaj Roll NO Group-C
Analysis of XRD Test.
Rocks Minerals and Crystals By Guest Scientist Dr. David Walker LDEO-Columbia University.
X-Ray Diffraction (XRD)
CHE (Structural Inorganic Chemistry) X-ray Diffraction & Crystallography lecture 2 Dr Rob Jackson LJ1.16,
Chapter 7 X-Ray diffraction. Contents Basic concepts and definitions Basic concepts and definitions Waves and X-rays Waves and X-rays Crystal structure.
X-ray diffraction Antony D. Han Chem 750/7530 Feb. 21, 2006.
Powder X-ray Crystallography
Chapter 12 Atomic X-Ray Spectroscopy
Applying X-Ray Diffraction in Material Analysis Dr. Ahmed El-Naggar.
X-RAY DIFFRACTION BY Fatma Defne Kocaayan Buket Sinem Gökhan Cesur.
X-Ray Diffraction Dr. T. Ramlochan March 2010.
PHYS 430/603 material Laszlo Takacs UMBC Department of Physics
Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure,
Last Time Brillouin Zones and Intro to Scattering
Chapter 3: Structures via Diffraction Goals – Define basic ideas of diffraction (using x-ray, electrons, or neutrons, which, although they are particles,
X-Ray Measurement Methods From Chapter 6 of Textbook 2 and other references Diffractometer Hull/Debye-Scherrer method Pinhole method Laue Method Rotating.
Interaction of X-Rays with Materials
1 Data Acquisition What choices need to be made?.
X-ray diffraction and minerals. Is this mineral crystalline?
Page 1 Phys Baski Diffraction Techniques Topic #7: Diffraction Techniques Introductory Material –Wave-like nature of electrons, diffraction/interference.
The Muppet’s Guide to: The Structure and Dynamics of Solids XRD.
Parameters of the new diffractometer “ARES” Aleksey E. Sokolov PNPI NRC “KI”
X-Ray Diffraction Spring 2011.
The Use of Synchrotron Radiation in Crystal Structure Analysis (Powder Diffraction) A.Al-Sharif Dept. of Physics Mu’tah University.
THE X-RAY DIFFRACTOMETER AND OTHER XRD INSTRUMENTATION Precession Camera.
X-ray powder diffraction
X-RAY METHODS FOR ORIENTING CRYSTALS
Prepared By – Amit $hah M.Pharm 1 st sem QA Roll NO :- 03 Guided By – Mr. Pinak R. Patel Assistant Professor Dept. P’ceutical Chem. D Dharmaj Degree Pharmacy.
Cont. Proteomics Structural Genomics Describes the experimental and analytical techniques that are used to determine the structure of proteins and RNA.
Presentation on.  There are many methods for measuring of fiber structure. Such as:  The absorption of infrared radiation  Raman scattering of light.
Single crystal XRD.
X-ray Crystallography - The Beginning
CHARACTERIZATION OF THE STRUCTURE OF SOLIDS
Powder x-ray diffraction
X – Ray Diffraction (XRD)
X-Rays.
X-Ray Diffraction and Reciprocal Lattice
Crystal and X-ray Diffraction
Essential Parts of the Diffractometer X-ray Tube: the source of X Rays Incident-beam optics: condition the X-ray beam before it hits.
Presentation transcript:

Essential Parts of the Diffractometer X-ray Tube: the source of X Rays Incident-beam optics: condition the X-ray beam before it hits the sample The goniometer: the platform that holds and moves the sample, optics, detector, and/or tube The sample & sample holder Receiving-side optics: condition the X-ray beam after it has encountered the sample Detector: count the number of X Rays scattered by the sample

Instrumentation Production of X-Rays Collimator Monochromator Detector Filter Crystal monochromator Detector Photographic methods Counter methods

The wavelength of X rays is determined by the anode of the X-ray source. Electrons from the filament strike the target anode, producing characteristic radiation via the photoelectric effect. The anode material determines the wavelengths of characteristic radiation. While we would prefer a monochromatic source, the X-ray beam actually consists of several characteristic wavelengths of X rays. K L M

Bragg’s law is a simplistic model to understand what conditions are required for diffraction. dhkl For parallel planes of atoms, with a space dhkl between the planes, constructive interference only occurs when Bragg’s law is satisfied. In our diffractometers, the X-ray wavelength l is fixed. Consequently, a family of planes produces a diffraction peak only at a specific angle q. Additionally, the plane normal must be parallel to the diffraction vector Plane normal: the direction perpendicular to a plane of atoms Diffraction vector: the vector that bisects the angle between the incident and diffracted beam The space between diffracting planes of atoms determines peak positions. The peak intensity is determined by what atoms are in the diffracting plane.

XRD-Methods Laue photographic method Braggs X-Ray spectrometer Rotating crystal method Powder method

Laue photographic method In his first experiments, Max von Laue (Nobel Prize in Physics in 1914) used continuous radiation (with all possible wavelengths) to impact on a stationary crystal. With this procedure the crystal generates a set of diffracted beams that show the internal symmetry of the crystal. In these circumstances, and taking into account Bragg's Law, the experimental constants are the interplanar spacings d and the crystal position referred to the incident beam. The variables are the wavelength λ and the integer number n: n λ = 2 dhkl sin θnh,nk,nl Thus, the diffraction pattern will contain (for the same spacing d) the diffracted beams corresponding to the first order of diffraction (n=1) of a certain wavelength, the second order (n=2) of half the wavelength (λ/2), the third order (n=3) with wavelength λ/3, etc. Therefore, the Laue diagram is simply a stereographic projection of the crystal

The Laue method in transmission mode The Laue method in reflection mode Laue diagram of a crystal

Braggs X-Ray spectrometer

When x-rays are scattered from a crystal lattice, peaks of scattered intensity are observed which correspond to the following conditions: The angle of incidence = angle of scattering. The pathlength difference is equal to an integer number of wavelengths. The condition for maximum intensity contained in Bragg's law above allow us to calculate details about the crystal structure, or if the crystal structure is known, to determine the wavelength of the x-rays incident upon the crystal.

X-radiation for diffraction measurements is produced by a sealed tube or rotating anode. Sealed X-ray tubes tend to operate at 1.8 to 3 kW. Rotating anode X-ray tubes produce much more flux because they operate at 9 to 18 kW. A rotating anode spins the anode at 6000 rpm, helping to distribute heat over a larger area and therefore allowing the tube to be run at higher power without melting the target. Both sources generate X rays by striking the anode target wth an electron beam from a tungsten filament. The target must be water cooled. The target and filament must be contained in a vacuum.

Rotating crystal method

Most of our powder diffractometers use the Bragg-Brentano parafocusing geometry. A point detector and sample are moved so that the detector is always at 2q and the sample surface is always at q to the incident X-ray beam. In the parafocusing arrangement, the incident- and diffracted-beam slits move on a circle that is centered on the sample. Divergent X rays from the source hit the sample at different points on its surface. During the diffraction process the X rays are refocused at the detector slit. This arrangement provides the best combination of intensity, peak shape, and angular resolution for the widest number of samples. F: the X-ray source DS: the incident-beam divergence-limiting slit SS: the Soller slit assembly S: the sample RS: the diffracted-beam receiving slit C: the monochromator crystal AS: the anti-scatter slit

What is X-ray Powder Diffraction (XRD) X-ray powder diffraction (XRD) is a rapid analytical technique primarily used for phase identification of a crystalline material and can provide information on unit cell dimensions. The analyzed material is finely ground, homogenized, and average bulk composition is determined.

Fundamental Principles of X-ray Powder Diffraction (XRD) Max von Laue, in 1912, discovered that crystalline substances act as three-dimensional diffraction gratings for X-ray wavelengths similar to the spacing of planes in a crystal lattice. X-ray diffraction is now a common technique for the study of crystal structures and atomic spacing. X-ray diffraction is based on constructive interference of monochromatic X-rays and a crystalline sample. These X-rays are generated by a cathode ray tube, filtered to produce monochromatic radiation, collimated to concentrate, and directed toward the sample. The interaction of the incident rays with the sample produces constructive interference (and a diffracted ray) when conditions satisfy Bragg's Law (nλ=2d sin θ).

This law relates the wavelength of electromagnetic radiation to the diffraction angle and the lattice spacing in a crystalline sample. These diffracted X-rays are then detected, processed and counted. By scanning the sample through a range of 2θangles, all possible diffraction directions of the lattice should be attained due to the random orientation of the powdered material. Conversion of the diffraction peaks to d-spacings allows identification of the mineral because each mineral has a set of unique d-spacings. Typically, this is achieved by comparison of d-spacings with standard reference patterns.

All diffraction methods are based on generation of X-rays in an X-ray tube. These X-rays are directed at the sample, and the diffracted rays are collected. A key component of all diffraction is the angle between the incident and diffracted rays. Powder and single crystal diffraction vary in instrumentation beyond this.

Applications of XRD XRD is a nondestructive technique To identify crystalline phases and orientation To determine structural properties: Lattice parameters (10-4Å), strain, grain size, expitaxy, phase composition, preferred orientation (Laue) order-disorder transformation, thermal expansion To measure thickness of thin films and multi-layers To determine atomic arrangement Detection limits: ~3% in a two phase mixture; can be ~0.1% with synchrotron radiation Spatial resolution: normally none

Applications X-ray powder diffraction is most widely used for the identification of unknown crystalline materials (e.g. minerals, inorganic compounds). Determination of unknown solids is critical to studies in geology, environmental science, material science, engineering and biology. Other applications include characterization of crystalline materials identification of fine-grained minerals such as clays and mixed layer clays that are difficult to determine optically determination of unit cell dimensions measurement of sample purity

With specialized techniques, XRD can be used to: determine crystal structures using Rietveld refinement determine of modal amounts of minerals (quantitative analysis) make textural measurements, such as the orientation of grains, in a polycrystalline sample characterize thin films samples by: determining lattice mismatch between film and substrate and to inferring stress and strain determining dislocation density and quality of the film by rocking curve measurements measuring superlattices in multilayered epitaxial structures determining the thickness, roughness and density of the film using glancing incidence X-ray reflectivity measurements

Strengths and Limitations of X-ray Powder Diffraction (XRD)? Powerful and rapid (< 20 min) technique for identification of an unknown mineral In most cases, it provides an unambiguous mineral determination Minimal sample preparation is required XRD units are widely available Data interpretation is relatively straight forward

Limitations Homogeneous and single phase material is best for identification of an unknown Must have access to a standard reference file of inorganic compounds (d-spacings, hkls) Requires tenths of a gram of material which must be ground into a powder For mixed materials, detection limit is ~ 2% of sample For unit cell determinations, indexing of patterns for non-isometric crystal systems is complicated Peak overlay may occur and worsens for high angle 'reflections'

SHIVA.PHARMACIST@GMAIL.COM THANK YOU