 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Ion Beam Analysis techniques:
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Contributions to Nuclear Data by Radiochemistry Division, BARC
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
The 12C+12C fusion reaction: a new opportunity at ATLAS Xiaodong Tang 1 & Chenglie Jiang 2 1) Univ. of Notre Dame 2) ANL.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
MINERvA Overview MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei Low Energy (LE) Beam Goals: – Study.
Alpha decay parent nucleus daughter nucleus Momentum conservation decides how the energy is distributed. r E 30 MeV 5 MeV.
15 N Zone 8 Zone 1 Zone 28 p Zone 1 Zone O Zone 1 Zone 4 Zone 8 Zone N 16 O p Reaction rates are used to determine relative abundance of elements.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
Astrophysics with DRAGON: The 26g Al (p,γ) 27 Si Reaction Heather Crawford a,1 for the DRAGON Collaboration b a Simon Fraser University, Burnaby, B.C.,
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Tools for Nuclear & Particle Physics Experimental Background.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE) Ruhr-University.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid O. Tengblad 1, B.S. Nara Singh 2, M. Hass.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
Applications of Nuclear Physics
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Activities and Opportunities at the accelerator lab in Bochum H.-W. Becker, NUPECC Small Scale Facilities workshop, 7./8. Sep
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
Bubble Chamber A novel technique for measuring thermonuclear rates at low energies Rashi TalwarAPS April Meeting 2016.
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
Laboratory for Underground Nuclear Astrophysics
Direct measurement of 4He(12C,16O)g reaction at KUTL*
Nucleosynthesis 12 C(
Study of the resonance states in 27P by using
Recoil charge state distributions in 12C(a,g)16O at DRAGON
7Be neutrino line shifts in the sun.
Direct Measurement of the 8Li + d reactions of astrophysical interest
Presentation transcript:

 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties of Nuclei and Nuclear Excitation 15 th – 21 st January 2006, Hirschegg, Austria

12 C( ,  ) 16 O the Holy Gral of Nuclear Astrophysics e e 3 He( ,  ) 7 Be pp chain

ErEr DANGER OF EXTRAPOLATION ! non resonant process interaction energy E extrapolation or measurements ? direct measurement 0 S(E) LINEAR SCALE S(E)-FACTOR -E r sub-threshold resonance low-energy tail of broad resonance Danger of Extrapolation Important for Experiments Low energy High energy

ERNA - Experimental approach Pro & Cons purification separation A B C n+ detection A  coincidence detection Requirements beam purification 100% transmission for the selected charge state high suppression of the incident beam inverse kinematics (gas target) Advantages low background high detection efficiency measure  tot background free  ray spectra gas target Disadvantages difficult to do commissioning charge state beam intenity ? A different approach: recoil mass separator C

ERNA - Experimental approach projectiles + Recoils p rec = p proj momentum conservation Separation Detection & Identification Recoils projectiles focusing He target  -ray emission  Recoil cone  -Recoil Coincidences Minimum supression factor with  = 10nbarn, n target =1x10 18 at/cm² N proj / N recoils ~ 1x10 14

ERNA - Experimental approachSetup ion source dynamitron tandem accelerator ion beam purification He Gastarget singlet 60° magnet  E-E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic quadrupole multiplets triplet side FC

characteristics:  angular acceptance  32 mrad for 16 O at E lab =3.0 – 15.0 MeV for the total length of the gas target  energy acceptance  10% for 16 O at E lab =3.0 – 15.0 MeV  suppression of incident beam ( )·10 -2 (IC) =>  min < 1 nb  purification of incident beam <  resolution of ion chamber  250·A keV or combination  E-silicon strip detector  layout COSY Infinity (recoils fit in 4” beam tube)  field settings are not calculated, but tuned

ERNA - Experimental approach Setup Gas target Gas pressure profile : 7 Li(  ) 11 B, 7 Li(  ) 7 Li + energy loss of: 14 N, 12 C, 7 Li

ERNA - Experimental approach Charge State Distributions measured for entire energy range but question about point of origin in the gas target → no equilibrium 4 He gas 12 C beam

ERNA - Experimental approach Setup Solution: a post-target-stripper to the separator ► First test with laser ablated carbon foil: 12 C( 12 C, 8 Be) 16 O ► Final configuration: Ar post-target stripper after the 4 He target 4 He Ar 3 He( ,  ) 7 Be no post-target-stripper – measure all charge states

Angular acceptance along the gas target ERNA - Experimental approach Setup 4 He gas 12 C beam separator central position upstream position beam diameter upstream position (energy acceptance) full angular acceptance  100 % transmission (better 3  ) over the total gas target length and full beam diameter

Angular acceptance along the gas target ERNA - Experimental approach Setup - + Simulation of recoil cone

12 C( ,  ) 16 O: E cm =1.3 MeV  rec = 26 mrad,  E/E = 10.8 %,  ≈ 150 pb ERNA - Experimental approach Angular Acceptance

Angular acceptance along the gas target Energy acceptance Change beam energy transmission  E / E 0 [ % ] experimental calculated ERNA - Experimental approach Setup

ERNA Motivation Helium Burning Main reactions: 3  12 C and 12 C(  ) 16 O Stellar Helium burning: 12 C(  ) 16 O 12 C/ 16 O abundance ratio Subsequent stellar evolution and nucleosynthesis but E 0 ~ 300 keV, very low cross section Accurate measurements at higher energy and extrapolation to E 0 are needed 12 C 4 He 16 O 4 He triple alpha 12 C(  ) 16 O Red Giant

12 C( ,  ) 16 O – Level Scheme ERNA  -ray spectroscopy low efficiency cosmic background angular Distributions target stability The 12 C( ,  ) 16 O reaction Complications: two subthreshold states dominate S(E)-factor at Gamow peak interference effects how to extrapolate? stellar energy window 12 C+ 4 He 16 O T ~ 3 x 10 8 K E cm (keV) E x (keV) JJJJ E1E2  ~ 1pb important for evolution of M  stars rate needed to ± 10% ! at Gamow peak (E ~ 300 keV) estimated cross section  ~ barn ! prohibitively small to be measured directly

ERNA  E/E Matrix 12 C(  ) 16 O E cm =2.5 MeV Suppression R~8*10 -12

ERNA  E/E Matrix E cm =4.4 MeV E cm =3.5 MeV E cm =3.2 MeV E cm =2.0 MeV  (literature) ≈ 10 nb  (literature) ≈ 0.8  b

ERNACross Section CurveRESULTS

ERNAastrophysical S FactorRESULTS

ERNA  -ray measurementsRESULTS ground state transition cascades via 7.12 and 6.92 MeV 16 O coincidences background ( 12 C coincidences) offresonance

ERNA Motivation Helium Burning solar spy = solar neutrinos Neutrino spectroscopy ? Sun = calibrated source

ERNA Motivation Neutrino Spectroscopy

 (L  ) = 0.4 %  age  ) = 0.4 %  Z/H  ) = 3.3 %  (L  ) = 0.4 %  age  ) = 0.4 %  Z/H  ) = 3.3 %  p-p) = 2 %  3 He+ 3 He) = 6 %  3 He+ 4 He) = 15 %  7 Be+p) = 10 %  p-p) = 2 %  3 He+ 3 He) = 6 %  3 He+ 4 He) = 15 %  7 Be+p) = 10 % Influence of different sources of uncertainties on the neutrino flux

ERNA Motivation Neutrino Spectroscopy Influence of different sources of uncertainties on the neutrino experiment

ERNA Motivation 3 He( ,  ) 7 Be 3 He( ,  ) 7 Be p + p  d + e + + e d + p  3 He +  3 He + 3 He   + 2p 3 He + 4 He  7 Be +  7 Be+e -  7 Li +  + e 7 Be + p  8 B +  7 Li + p   +  8 B  2  + e + + e 84.7 %13.8 % % 0.02 % pp Kette important for: - precise determination of solar neutrino flux - cosmology – BBN nucleosynthesis

ERNA Motivation 3 He( ,  ) 7 Be Gamma: S 34 (0) = 0.507±0.016 keVb Activation: S 34 (0) = 0.563±0.018 keVb E x (keV) JJ /2 - 1/2 - 3/2 - 3 He+ 4 He 7 Be level scheme Q = 1587keV DC  429 DC  0  428 E x (keV) 7 Li 0 EC 1/2 - 3/2 - JJ  3 He (  ) 7 Be ( e, ) 7 Li *(  ) 7 Li

ERNA Acceptance 3 He( ,  ) 7 Be

ERNA  E/E Spectra 3 He( ,  ) 7 Be E cm =1.8 MeV Inverse kinematics

ERNAastrophysical S FactorRESULTS Preliminary result

 14 N(p,  ) 15 O  16 N  -delayed  -decay  14 N(a,  ) 18 F  d(a,  ) 6 Li ERNA - future plans and other perspectives ERNA – present status  12 C( ,  ) 16 O E cm >1.9 MeV (1.3 MeV)  3 He(a,  ) 7 Be E cm >1.1 MeV (0.6 MeV)