ANNE I. S. HOLM AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM PURPOSE › Transport beam to the target › Shape the beam profile and size at target › Provide beam to a tuning and commissioning dump › Be able to diagnose the beam energy and energy spread › Be loss free 2
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM OPTIMIZATION PARAMETERS › Large aperture to beam size ratio › Easy upgradable › 4.5 m elevation 3
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM UPGRADE HIGH BETA 4 › Linac focusing structure Linac Warm Unit › = 30 deg
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM ACHROMAT 5 › 4.5 m elevation
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM TUNE-UP DUMP 6 › Commissioning and daily tuning › dump = 12.5 mm
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM DIAGNOSTICS DUMP 7 › Diagnose the beam › dump = 12.5 mm › RMS(D)/RMS( )=6-8
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM DIAGNOSTICS DUMP 8 2 dipole design: RMS(D)/RMS( )=6-8 3 dipole design: RMS(D)/RMS( )= dipole design: RMS(D)/RMS( )=15-35
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM OPTIMIZATION PARAMETERS A2T › Peak current density target (< 64 A/cm 2 ) › Power deposit outside footprint (160 mm x 60 mm) › Power fixed collimator. › Beam loss inside A2T elements › Double waist after the last quadrupole 9
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM ACCELERATOR 2 TARGET 10 › target = 58 A/cm 2 › PBW = 90 A/cm 2 › Collimator = 670 W Neutron Shield Fixed Collimator PBW Octupoles
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BEAM PROFILES (BP) 11 Target = 58 A/cm 2 PBW = 90 A/cm 2 Outside = 0.5 % Target = 49 A/cm 2 PBW = 77 A/cm 2 Outside = 2.7 % Target = 44 A/cm 2 PBW = 68 A/cm 2 Outside = 7.4 %
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BP SPECIFICATIONS… 12 Normal conditionsOff-normal unit Zone T1 <10 pulses<1 pulses Horizontal width160 mm Vertical width60 mm Beam power within footprint>90>50 % of nominal current Maximum current density<64<100 mA/cm2 Horizontal tolerance on beam centroid±6 mm Vertical tolerance on beam centroid±6 mm Zone T2 Horizontal width mm Vertical width60-70 mm Horizontally integrated power deposit <9 <45 % of nominal current Vertically integrated power deposit <1 <5 % of nominal current Zone T3 Horizontal width>200 mm Vertical width>70 mm Horizontally integrated power deposit???% of nominal current Vertically integrated power deposit???% of nominal current Target
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BP SPECIFICATIONS… 13 Proton Beam Window Normal conditionsOff-normal unit Zone W1 <10 pulses<1 pulses Horizontal width192 mm Vertical width70 mm Beam power within footprint>99 ????% of nominal current Maximum current density<100 ????mA/cm2 Horizontal tolerance on beam centroid±6 mm Vertical tolerance on beam centroid±6 mm Zone W2 Horizontal width mm Vertical width mm Horizontally integrated power deposit ?? ??% of nominal current Vertically integrated power deposit ?? ??% of nominal current Zone W3 Horizontal width>350 mm Vertical width>350 mm Horizontally integrated power deposit ? ??% of nominal current Vertically integrated power deposit ? ??% of nominal current
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM STEP FIELD MAGNETS – ”A DIFFERENT OCTUPOLE” 14
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM A2T WITH SFM 15 › Collimator = 360 W › target = 46 A/cm 2 › PBW = 72 A/cm 2 Neutron Shield Fixed Collimator PBW Step-Field-Magnets
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BEAM PROFILES 16 Target = 48 A/cm 2 PBW = 74 A/cm 2 Outside = 0.02 % Target = 41 A/cm 2 PBW = 64 A/cm 2 Outside = 9 %
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM CONCLUSIONS 17 HEBT Baseline Design › PCDs depend on allowed power at target edge [0.5%-7.4%] [(58-44) A/cm 2 target & [[(90-68) A/cm 2 PBW › Nominal beam only loss at the fixed collimator HEBT Design with Step Field magnets › PCDs depend on allowed power at target edge [0.02%-8.9%] [(48-41) A/cm 2 target & [[(74-64) A/cm 2 PBW › Nominal beam only loss at the fixed collimator
AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM FUTURE/CURRENT STUDIES 18 › Stability of OPs versus SFMs with regards to: › Emittance › Halo › Misaligment