ANNE I. S. HOLM AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI 17.04.2013 BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM.

Slides:



Advertisements
Similar presentations
R. Miyamoto, Beam Physics Design of MEBT, ESS AD Retreat 1 Beam Physics Design of MEBT Ryoichi Miyamoto (ESS) November 29th, 2012 ESS AD Retreat On behalf.
Advertisements

ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.
Experience with Bunch Shape Monitors at SNS A. Aleksandrov Spallation Neutron Source, Oak Ridge, USA.
AARHUS UNIVERSITY High-Energy Beam Transport for ESS (WP7) Søren Pape Møller 4th SPL - Lund – 2010/06/30.
Michael Butzek, Jörg Wolters, Bernhard Laatsch Mitglied der Helmholtz-Gemeinschaft Proton beam window for High Power Target Application 4th.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
TATIONpRÆSEN ESS TAC, 5-6 Nov, 2014 AARHUS UNIVERSITET High Energy Collimator Recommendation H.D. Thomsen, S.P. Møller (ISA, Aarhus University) M. Eshraqi,
A NON LINEAR TRANSPORT LINE FOR THE OPTIMIZATION OF F18 PRODUCTION BY THE TOP LINAC INJECTOR C. Ronsivalle, L. Picardi, C. Cianfarani, G. Messina, G.L.
PS Booster Studies with High Intensity Beams Magdalena Kowalska supervised by Elena Benedetto Space Charge Collaboration Meeting May 2014.
New Progress of the Nonlinear Collimation System for A. Faus-Golfe J. Resta López D. Schulte F. Zimmermann.
AWAKE Electron Spectrometer Simon Jolly, Lawrence Deacon, Matthew Wing 28 th January 2015.
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
TATIONpRÆSEN APRIL 8, 2014 AARHUS UNIVERSITET Commissioning of the A2T: DC and AC Magnet Systems Heine Dølrath Thomsen, ISA, Aarhus University 1.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
Experience from the Spallation Neutron Source Commissioning Dong-o Jeon Accelerator Physics Group Oak Ridge National Laboratory May 9, 2007.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Commissioning Status of Shintake Monitor (IP-BSM) T. Yamanaka, M. Oroku, Y. Yamaguchi, Y. Kamiya, S. Komamiya (Univ. of Tokyo), T. Okugi, N. Terunuma,
ILC Beam Delivery System / MDI Issues for LCC-phase (~
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
R. Miyamoto, Beam Loss and Collimation in the ESS Linac, HB Beam Loss and Collimation in the ESS Linac Ryoichi Miyamoto (ESS) B. Cheymol, H. Danared,
Open Midplane Dipole (OMD) Design for Dipole First Layout R. Gupta (BNL), N. Mokhov (FANL) bnl - fnal- lbnl - slac US LHC Accelerator Research Program.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
Managed by UT-Battelle for the Department of Energy SNS Injection and Extraction Systems Issues and Solutions by M. Plum for the SNS team and our BNL collaborators.
17 th November, 2008 LCWS08/ILC08 1 BDS optics and minimal machine study Deepa Angal-Kalinin ASTeC & The Cockcroft Institute Daresbury Laboratory.
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Beam Instrumentation in Monolith Stephen Molloy PBI Taskforce Leader.
1 EMMA Tracking Studies Shinji Machida ASTeC/CCLRC/RAL 4 January, ffag/machida_ ppt & pdf.
ISIS Upgrade Modelling Dean Adams On behalf of STFC/ISIS C Warsop, B Jones, B Pine, R Williamson, H Smith, M Hughes, A McFarland, A Seville, I Gardner,
RF source, volume and caesiated extraction simulations (e-dump)
Accelerator Systems DivisionOak Ridge National Laboratory March 10-12, 2003 ORBIT SIMULATIONS AND RESULTS Jeff Holmes Accelerator Physicist September 30,
T. Limberg Position of the 3rd Harmonic System. Injector (with first Bunch Compression Stage) 2 European XFEL MAC May 2010 T. Limberg.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
LER Workshop, October 11, 2006LER & Transfer Line Lattice Design - J.A. Johnstone1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Introduction The.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
FLS2010 Workshop, Stanford, March 1-5, 2010 Florian Loehl (Cornell University) Commissioning of the High Current ERL Injector at Cornell Florian Loehl.
Beam collimation in the transfer line from 8 GeV linac to the Main Injector A. Drozhdin The beam transfer line from 8 GeV Linac to the Main Injector is.
F James T Volk Arpil Permanent Magnets for Linear Colliders James T Volk Fermilab.
Beam losses and collimation at the Oak Ridge Spallation Neutron Source by Mike Plum Beam losses and collimators in transfer lines workshop Lund May 13-14,
Beam on Target Diagnostics Beam on Target Meeting 2013 March Tom Shea.
HEBT Design Considerations Jingyu Tang, Xiangqi Wang, Hao Hao, Jiajia Tian IHEP, USTC International Review Meeting on Accelerator Physics Design of C-ADS,
Beam dynamics and linac optics studies for medical proton accelerators
Using step-like nonlinear magnets for beam uniformization at target in high intensity accelerarors Zheng Yang, Jing-Yu Tang, IHEP, China P.A. Phi Nghiem,
M. Munoz April 2, 2014 Beam Commissioning at ESS.
The Preparation for CSNS Accelerator Commissioning Sheng Wang June 8, 2015, Dongguan.
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
PS2 beam parameters and proposal for aperture strategy M. Benedikt , PS2 meeting1Beams and apertures, M.Benedikt.
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
TATIONpRÆSEN January 25, 2013 AARHUS UNIVERSITET Raster Scanning of the ESS Beam Heine Dølrath Thomsen 1.
Study on IFMIF Beam-Target Interface
Zheng Yang, Jing-Yu Tang, IHEP, China
contribution to the round table discussion
J-PARC main ring lattice An overview
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
Energy deposition studies on magnets. Aim. First applications
IF Separator Design of RAON
Options and Recommendations for TL and Dumps
BEAM DISTRIBUTION FLATTENING TECHNIQUES
1- Short pulse neutron source
European Spallation Neutron Source ESNS
Physics Design on Injector I
Radiation fields During 1st stage beam commissioning
Bunch Compressor Beam Line Optics
HALLA APEL REPORT Yves Roblin Hall A colllaboration Meeting
Possibility of MEIC Arc Cell Using PEP-II Dipole
MEIC Alternative Design Part III
JLEIC electron ring with damping wigglers
Presentation transcript:

ANNE I. S. HOLM AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM PURPOSE › Transport beam to the target › Shape the beam profile and size at target › Provide beam to a tuning and commissioning dump › Be able to diagnose the beam energy and energy spread › Be loss free 2

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM OPTIMIZATION PARAMETERS › Large aperture to beam size ratio › Easy upgradable › 4.5 m elevation 3

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM UPGRADE HIGH BETA 4 › Linac focusing structure  Linac Warm Unit › = 30 deg

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM ACHROMAT 5 › 4.5 m elevation

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM TUNE-UP DUMP 6 › Commissioning and daily tuning › dump = 12.5 mm

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM DIAGNOSTICS DUMP 7 › Diagnose the beam › dump = 12.5 mm › RMS(D)/RMS(  )=6-8

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM DIAGNOSTICS DUMP 8 2 dipole design: RMS(D)/RMS(  )=6-8 3 dipole design: RMS(D)/RMS(  )= dipole design: RMS(D)/RMS(  )=15-35

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM OPTIMIZATION PARAMETERS A2T › Peak current density target (< 64  A/cm 2 ) › Power deposit outside footprint (160 mm x 60 mm) › Power fixed collimator. › Beam loss inside A2T elements › Double waist after the last quadrupole 9

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM ACCELERATOR 2 TARGET 10 › target = 58  A/cm 2 › PBW = 90  A/cm 2 › Collimator = 670 W Neutron Shield Fixed Collimator PBW Octupoles

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BEAM PROFILES (BP) 11 Target = 58  A/cm 2 PBW = 90  A/cm 2 Outside = 0.5 % Target = 49  A/cm 2 PBW = 77  A/cm 2 Outside = 2.7 % Target = 44  A/cm 2 PBW = 68  A/cm 2 Outside = 7.4 %

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BP SPECIFICATIONS… 12 Normal conditionsOff-normal unit Zone T1 <10 pulses<1 pulses Horizontal width160 mm Vertical width60 mm Beam power within footprint>90>50 % of nominal current Maximum current density<64<100 mA/cm2 Horizontal tolerance on beam centroid±6 mm Vertical tolerance on beam centroid±6 mm Zone T2 Horizontal width mm Vertical width60-70 mm Horizontally integrated power deposit <9 <45 % of nominal current Vertically integrated power deposit <1 <5 % of nominal current Zone T3 Horizontal width>200 mm Vertical width>70 mm Horizontally integrated power deposit???% of nominal current Vertically integrated power deposit???% of nominal current Target

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BP SPECIFICATIONS… 13 Proton Beam Window Normal conditionsOff-normal unit Zone W1 <10 pulses<1 pulses Horizontal width192 mm Vertical width70 mm Beam power within footprint>99 ????% of nominal current Maximum current density<100 ????mA/cm2 Horizontal tolerance on beam centroid±6 mm Vertical tolerance on beam centroid±6 mm Zone W2 Horizontal width mm Vertical width mm Horizontally integrated power deposit ?? ??% of nominal current Vertically integrated power deposit ?? ??% of nominal current Zone W3 Horizontal width>350 mm Vertical width>350 mm Horizontally integrated power deposit ? ??% of nominal current Vertically integrated power deposit ? ??% of nominal current

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM STEP FIELD MAGNETS – ”A DIFFERENT OCTUPOLE” 14

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM A2T WITH SFM 15 › Collimator = 360 W › target = 46  A/cm 2 › PBW = 72  A/cm 2 Neutron Shield Fixed Collimator PBW Step-Field-Magnets

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM BEAM PROFILES 16 Target = 48  A/cm 2 PBW = 74  A/cm 2 Outside = 0.02 % Target = 41  A/cm 2 PBW = 64  A/cm 2 Outside = 9 %

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM CONCLUSIONS 17 HEBT Baseline Design › PCDs depend on allowed power at target edge [0.5%-7.4%]  [(58-44)  A/cm 2 target & [[(90-68)  A/cm 2 PBW › Nominal beam  only loss at the fixed collimator HEBT Design with Step Field magnets › PCDs depend on allowed power at target edge [0.02%-8.9%]  [(48-41)  A/cm 2 target & [[(74-64)  A/cm 2 PBW › Nominal beam  only loss at the fixed collimator

AARHUS UNIVERSITET INSTITUT FOR FYSIK OG ASTRONOMI BASELINE DESIGN OF THE ESS HIGH ENERGY BEAM TRANSPORT LINE ANNE I. S. HOLM FUTURE/CURRENT STUDIES 18 › Stability of OPs versus SFMs with regards to: › Emittance › Halo › Misaligment