Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina.

Slides:



Advertisements
Similar presentations
Use of the Frequency Agile Solar Radiotelescope for Space Weather A New Solar-dedicated Radio Facility Dale E. Gary, NJIT; Stephen M. White, U Maryland.
Advertisements

NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
Evolving X-ray Polarimetry towards high energy and solar science Sergio Fabiani Università degli Studi di Roma “Tor Vergata” INAF / IAPS I A P S Istituto.
Statistical Properties of GRB Polarization
The GMRT Radio Halo survey Results and implications for LOFAR Simona Giacintucci Harvard-Smithsonian CfA, Cambridge, USA INAF-IRA, Bologna, Italy T. Venturi,
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
ISSI THz Overview Hugh Hudson, Säm Krucker, Gerard Trottet.
Working Group 2 - Ion acceleration and interactions.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Advances in Plasma Astrophysics, Giardini-Naxos, 6-10 Sept D Modeling of Solar Flaring Loops New Interactive Solar Flare Modeling and Advanced Radio.
3 November 2003 event HXR/Gamma-ray and radio observations Rhessi_workshop.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
Sub-THz Radiation Mechanisms in Solar Flares Gregory D. Fleishman and Eduard P. Kontar(*) March 10, 2010 (*) Department of Physics and Astronomy, University.
Reverse Drift Bursts in the GHz Band and their Relation to X-Rays František Fárník and Marian Karlický Astronomical Institute Academy of Sciences.
Inversions of Flaring Radio Emissions. Gregory D. Fleishman.
Diagnostics and constraints for relativistic electron and ion acceleration in solar flares N. Vilmer LESIA –Observatoire de Paris Ascona_June
Coronal Hard X-rays Come of Age H. S. Hudson SSL, UC Berkeley.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
RHESSI 4-8 April 06 Origin of > 100 GHz radio emission Gérard Trottet Laboratoire d’Etudes Spatiale et d’Instrumentation en Astrophysique (LESIA) Observatoire.
Coronal hard X-rays prior to RHESSI H. S. Hudson Space Sciences Lab, UC Berkeley.
SPATIALLY RESOLVED MINUTE PERIODICITIES OF MICROWAVE EMISSION DURING A STRONG SOLAR FLARE Kupriyanova E. 1,Melnikov V. 1, Shibata K. 2,3, Shibasaki K.
Electron Acceleration and Transport in Microwave Flaring Loops V. Melnikov (Radiophysical Research Institute, Russia) Nobeyama Symposium, October.
Analysis of the polarization degree distribution along limb flaring loop of July 19, 2012 S. Kuznetsov 1, A. Morgachev 1 V. Melnikov 2 Radiophysical Research.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Dale E. Gary Professor, Physics, Center for Solar-Terrestrial Research New Jersey Institute of Technology 1 03/15/2012Preliminary Design Review.
Observations of quiet solar features with the SSRT and NoRH V.V. Grechnev & SSRT team Institute of Solar-Terrestrial Physics, Irkutsk, Russia Relatively.
Solar Energetic Particle Events: An Overview Christina Cohen Caltech.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
8/12/201514th RHESSI Workshop 1 Dale E. Gary, Center for Solar-Terrestrial Research, Physics Department, NJIT.
Outstanding Issues Gordon Holman & The SPD Summer School Faculty and Students.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
NBYM04 Introduction 1.“Symposium on Nobeyama Radioheliograph” –1990 November NRO 2.“Kofu symposium – New look at the Sun with emphasis on advanced.
Radio and X-ray Diagnostics of Energy Release in Solar Flares Thesis Committee: Tim Bastian (NRAO, thesis advisor), Dale Gary (NJIT), Zhi-Yun Li (UVa),
Fine temporal and spatial structure of the microwave emission sources from the SSRT and NoRH observations Altyntsev A. T., Kuznetsov A.A., Meshalkina N.S.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of Prominence Eruption Masumi Shimojo Nobeyama Solar Radio Observatory NAOJ/NINS 2004/10/28 Nobeyama Symposium SeiSenRyo.
Quasi-Periodic Pulsations as a Feature of the Microwave Emission Generated by Solar Single-Loop Flares Seismology of Stellar Coronal Flares, May.
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
SHINE SEP Campaign Events: Detailed comparison of active regions AR9906 and AR0069 in the build-up to the SEP events of 21 Apr 2002 and 24 Aug 2002 D.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
Hard X-ray and radio observations of the 3 June 2007 flare Nicole Vilmer Meriem Alaoui Abdallaoui Solar Activity during the Onset of Solar Cycle
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Type IV Radio Bursts and Source Regions Observed by NoRH: Results Sara Petty, CUA/ GSFC Advisor: Dr. Nat Gopalswamy Type IV Radio Bursts Revisited Research.
STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Session 8: Particle Acceleration and Transport in Flares and their Relationship to SEP Events Antoun Daou David Alexander Rice University 2011 SHINE WORKSHOP.
Scientific Interests in OVSA Expanded Array Haimin Wang.
OBSERVATION OF MICROWAVE OSCILLATIONS WITH SPATIAL RESOLUTION V.E. Reznikova 1, V.F. Melnikov 1, K. Shibasaki 2, V.M. Nakariakov 3 1 Radiophysical Research.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Summary Using 21 equatorial CHs during the solar cycle 23 we studied the correlation of SW velocity with the area of EIT CH and the area of NoRH RBP. SW.
G. Nita 1 G. Fleishman 1, A. Kuznetsov 2, E. Kontar 3, D. Gary 1 1 New Jersey Institute of Technology, Physics, Newark- NJ, USA. 2 Institute of Solar-Terrestrial.
Physics of Solar Flares
Jan 2016 Solar Lunar Data.
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Two Years of NoRH and RHESSI Observations: What Have We Learned
PLANETARY X-RAY AURORAS
Origin of > 100 GHz radio emission
Coronal and interplanetary radio emission as a tracer of solar energetic particle propagation Karl-Ludwig Klein (F Meudon)
Radio Signatures of Coronal Magnetic Fields and Reconnections
Evidence for magnetic reconnection in the high corona
Presentation transcript:

Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina NJIT 05 Nov. 2013

HAPPY BIRTHDAY, DALE!

Dale Gary, Research Highlights I. Instrumentation Owens Valley Solar Array (OVSA) Korean Solar Radio Burst Locator (KSRBL) FASR Subsystem Testbed (FST) EOVSA Subsystem Testbed (EST) Expanded OVSA (EOVSA )

Dale Gary, Research Highlights II. Research

276 Citations

HAPPY BIRTHDAY, DALE!

60 $60 Million NSF Grant Will Upgrade EOVSA to FASR BEST WISHES, DALE! NEWARK, Nov $60

Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina NJIT 05 Nov. 2013

Plan of the talk Where relativistic positrons come from in flares? What is the positron contribution to the microwave emission? How emission by positrons can be distinguished from that by electrons? Can this be done with existing microwave databases? Data analysis Discussion and conclusions

Origin of Relativistic Positrons in Flares

Acceleration of Ions

Polarimetry – a key to positron detection

Nobeyama Radioheliograph (NoRH) is well suited for our study: NoRH produces images of intensity (I = R+L) and polarization (V = R – L) at 17 GHz while of the intensity only at 34 GHz. In addition, Nobeyama Polarimeters (NoRP) (Nakajima 1985) observe total power data (both I and V) at a number of single frequencies including 17 and 35 GHz. This set of observational tools suggests the following strategy of identifying properties of solar bursts with unambiguous positron contribution: (i)single, spatially coinciding, sources at both 17 and 34 GHz; (ii)the 34 GHz emission must come from an area where the 17 GHz V displays a unipolar distribution (i.e., the polarization of 17 GHz emission has a definite sense throughout the region of 34 GHz emission); and (iii) the total power V must have opposite signs at 17 and 34 GHz.

Gan et al (2001). 13 Mar 2000 YohkohNoRP

Gan et al (2001). V, 17 GHz, RCP Bz, photosphere

Gan et al (2001). X-ray MW Spectra

Polarization

24 Aug 2002 >90 MeV keV MeV V.Kurt. Pr. Com.

17 May 1999

15 Jul 2004 Kawate et al. 2012

03 Mar 2000

02 Sep 2001

23 Apr 1998

24 Oct 2003 ?

9 Jul 2012 NO

High-frequency microwave imaging spectropolarimetry offers a new way of detecting and studying relativistic positrons from solar flares. Analysis of the Nobeyama database augmented by other context data reveals around 10 events-candidates with the relativistic positron signature; a few of them unambiguously show all expected evidence, so the conclusion that the positrons dominated in producing high-frequency microwave emission in those events seems inescapable. New generation of the radio imaging instruments observing at many high frequencies, such as JVLA and ALMA, promises that the positron contribution to the GS emission can be routinely observed in many events. Being observed at many frequencies the relativistic positron energy spectrum and spatial distribution can be measured in great detail as a function of time. Summary