Van Roekeghem et al., EPL (2014) Electronic structure calculations in strongly correlated materials A short overview Pascal Delange - Journée scientifique.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Modelling of Defects DFT and complementary methods
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Quantum Theory of Solids
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Metals: Bonding, Conductivity, and Magnetism (Ch. 6)
Lecture IX Crystals dr hab. Ewa Popko. The Schrödinger equation The hydrogen atom The potential energy in spherical coordinates (The potential energy.
Introduction to Molecular Orbitals
Lecture 1: A New Beginning References, contacts, etc. Why Study Many Body Physics? Basis for new Devices Complex Emergent Phenomena Describe Experiments.
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Electronic structure of La2-xSrxCuO4 calculated by the
Quantum Mechanics Discussion. Quantum Mechanics: The Schrödinger Equation (time independent)! Hψ = Eψ A differential (operator) eigenvalue equation H.
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
P461 - Solids1 Solids - types MOLECULAR. Set of single atoms or molecules bound to adjacent due to weak electric force between neutral objects (van der.
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
P461 - Solids1 Solids - types MOLECULAR. Set of single atoms or molecules bound to adjacent due to weak electric force between neutral objects (van der.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Screening As a free electron approaches a positive cation, it will be attracted to the nucleus. But, it is also repelled by any electrons orbiting the.
1. Chemical Bonding in Solids The Periodic Table ‚Covalent Bonding ƒIonic Bonding „Metallic Bonding …The Hydrogen Bond †The van der Waals Bond.
Topics in Magnetism II. Models of Ferromagnetism Anne Reilly Department of Physics College of William and Mary.
Materials 286K Class 02. The Peierls distortion seen in 1D chains: The simplest model for a gap. Note that we go from being valence-imprecise.
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
Magnetoresistance in oxydized Ni nanocontacts Department of Applied Physics, U. Alicante, SPAIN D. Jacob, J. Fernández-Rossier, J. J. Palacios
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
Lecture IV Crystals dr hab. Ewa Popko. Why Solids?  most elements are solid at room temperature  atoms in ~fixed position “simple” case - crystalline.
Solid State Physics Bands & Bonds. PROBABILITY DENSITY The probability density P(x,t) is information that tells us something about the likelihood of.
Lecture 17: Excitations: TDDFT Successes and Failures of approximate functionals Build up to many-body methods Electronic Structure of Condensed Matter,
Yoon kichul Department of Mechanical Engineering Seoul National University Multi-scale Heat Conduction.
Superconductivity III: Theoretical Understanding Physics 355.
Electronic instabilities Electron phonon BCS superconductor Localization in 1D - CDW Electron-electron (  ve exchange)d-wave superconductor Localization.
First principles electronic structure: density functional theory
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) These PowerPoint color diagrams can only be used by.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Density Functional Theory Richard M. Martin University of Illinois
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
1 Lecture VIII Band theory dr hab. Ewa Popko. 2 Band Theory The calculation of the allowed electron states in a solid is referred to as band theory or.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Density Functional Theory The Basis of Most Modern Calculations
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Chapter 1 Introduction 1.1 Classification of optical processes Reflection Propagation Transmission Optical medium refractive index n( ) = c / v ( )
Atomic Quantum Mechanics - Hydrogen Atom ( ) Assuming an atom doesn’t move in space (translate), the SE is reduced to solving for the electrons.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2008 Dr. Susan Lait.
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
2/09/2015PHY 752 Spring Lecture 111 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 11: Reading: Chapter 9 in MPM Approximations.
The Quantum Theory of Magnetism Carlo Maria Canali Linnaeus University 7 December 2011 – Lecture 21.
Origin of energy band formation:
Computational Physics (Lecture 22) PHY4061. In 1965, Mermin extended the Hohenberg-Kohn arguments to finite temperature canonical and grand canonical.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
Flat Band Nanostructures Vito Scarola
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Review of solid state physics
PHY 752 Solid State Physics Review: Chapters 1-6 in GGGPP
Electronic polarization. Low frequency dynamic properties.
Yosuke Harashima, Keith Slevin
ECEE 302: Electronic Devices
Condensed Matter Physics: review
Electronic Structure and First Principles Theory
Band Theory of Solids 1.
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Second quantization and Green’s functions
Presentation transcript:

Van Roekeghem et al., EPL (2014) Electronic structure calculations in strongly correlated materials A short overview Pascal Delange - Journée scientifique de l'EDPIF1

The many-body problem Pascal Delange - Journée scientifique de l'EDPIF2 Typical google results for « 3-body problem » Chaotic behaviour, numerically intractable

The many-body problem Pascal Delange - Journée scientifique de l'EDPIF3 How about 3.6x10 24 bodies instead ? (number of electrons in 1g of C) Is the electron-electron repulsion important ?  Strongly material dependent ! Fe - correlated Al – free electron like Why the difference ?

Band structure calculations What is a band ? Pascal Delange - Journée scientifique de l'EDPIF4 Principles of general Chemistry, Averill & Elderedge

Band structure calculations What is a band ? The band is to the molecular bond what the crystal is to the molecule Pascal Delange - Journée scientifique de l'EDPIF 5 molécule … … Infinite 1D atom chain a « wave vector »

Band structure calculations Realistic calculations : Pascal Delange - Journée scientifique de l'EDPIF6 Ec électrons Ec ions répulsion ions répulsion ion-électron répulsion électron-électron

Band structure calculations Realistic calculations : Pascal Delange - Journée scientifique de l'EDPIF7 Ec électrons Ec ions répulsion ions répulsion ion-électron répulsion électron-électron Born-Oppenheimer approximation : immobile ions

Band structure calculations Realistic calculations : Born-Oppenheimer for ions Still, what about e-e interaction ? Modern methods circumvent this annoying problem  Treat an effective problem, “equivalent” to the original one (in some sense…) Pascal Delange - Journée scientifique de l'EDPIF8

Band structure calculations Pascal Delange - Journée scientifique de l'EDPIF9 Hohenberg-Kohn theorem: ”The ground state density uniquely determines the potential and consequently all properties of the system, including the many-body wave-function”  Work on the density instead of individual wave-functions  Work on an effective potential instead of explicit electron-electron repulsion

Band structure calculations Pascal Delange - Journée scientifique de l'EDPIF10 Aluminium [Ne]3s 2 3p 1 Free electrons

Band structure calculations Pascal Delange - Journée scientifique de l'EDPIF11 Flat bands -> localisation of electrons -> strong interactions up down 3d, 4f : strong correlations = problems

Band structure calculations Pascal Delange - Journée scientifique de l'EDPIF12 P. Seth wide orbital = strong hopping = wide band & screened interaction Tight orbital = small hopping = narrow band & strong interaction

Can we see “real” bands ? Pascal Delange - Journée scientifique de l'EDPIF13 Photoemission spectroscopy : Cu

Can we see “real” bands ? Pascal Delange - Journée scientifique de l'EDPIF14 More complicated in reality : we do not see “pure” bands

From bands to localized electrons Pascal Delange - Journée scientifique de l'EDPIF15 The Mott transition : metal to insulator U : local Coulomb interaction parameter A(w) : spectral function (~measured in photoemission) States at Fermi level : metal Band gap : insulator Increasing local Coulomb interaction

From bands to localized electrons Pascal Delange - Journée scientifique de l'EDPIF16 The Mott transition : metal to insulator The Hubbard model

Conclusion A large family of phenomena due to e-e interaction Magnetism (Ferro, Para, Anti-ferro…) Magnetoresistance (high-Tc) superconductivity Luminescence of phosphors Metal-insulator transition … Do you have questions ? Pascal Delange - Journée scientifique de l'EDPIF17