Unit 3: Measurement and Calculations Cartoon courtesy of NearingZero.net.

Slides:



Advertisements
Similar presentations
Forensic Science.   Part 1 - number  Part 2 - scale (unit)  Examples:  20 grams  6.63 x Joule seconds Measurement - quantitative observation.
Advertisements

Measurement and Significant Figures
Significant Digits and Scientific Notation
Measurement and Significant Figures
MEASUREMENT Cartoon courtesy of Lab-initio.com.
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Significant Figures Cartoon courtesy of Lab-initio.com
Cartoon courtesy of NearingZero.net. Significant Figures.
Rules for Counting Significant Figures - Details Nonzero integers always count as significant figures has 4 sig figs.
Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Scientific Notation & Significant Figures in Measurement Dr. Sonali Saha Chemistry Honors Fall 2014.
Scientific Notation.
Scientific Notation Cartoon courtesy of NearingZero.net.
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
MeasurementsandCalculations. Numbers Numbers in science are different than in math. Numbers in science always refer to something grams 12 eggs.
Chemistry Chapter 2 MeasurementsandCalculations. Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses -
Significant Figures, Precision, and Accuracy. Significant Figures Significant figures are numbers that mean something when reporting a value. Just because.
Honors Chemistry I. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Chapter 2: Scientific Method Cartoon courtesy of NearingZero.net.
Chemical Foundations. Steps in the Scientific Method 1. Observations -quantitative - qualitative 2.Formulating hypotheses - possible explanation for the.
Chemical Foundations. Steps in a Scientific Method (depends on particular problem) 1. Observations -quantitative - qualitative 2.Formulating hypotheses.
INTRODUCTION Matter And Measurement Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating Hypotheses - possible explanation.
Chemistry Chapter 1 Introduction, Measurement, Introduction, Measurement, and Problem Solving and Problem Solving.
Measurements in Chemistry MeasurementsandCalculations.
1 Measurements. 2 Nature of Measurement Measurement - quantitative observation consisting of 2 parts Part 1 - number Part 2 - scale (unit) Part 2 - scale.
Section 2.1 Units and Measurements
Chemical Foundations. Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative.
Section 5: Significant Figures Cartoon courtesy of Lab-initio.com Unit 1: Matter & Measurement.
The SI System of Measurement
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Scientific Notation & Significant Figures in Measurement.
“Scientific Measurement”. Measurements and Their Uncertainty OBJECTIVES: Convert measurements to scientific notation.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty. Significant figures.
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Ms. D CHEMISTRY Determining Significant Figures. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has.
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Scientific Notation: A method of representing very large or very small numbers in the form: M x 10 n M x 10 n  M is a number between 1 and 10  n is.
Why Is there Uncertainty? Measurements are performed with instruments, and no instrument can read to an infinite number of decimal places Which of the.
Chemistry I. Precision and Accuracy Accuracy refers to the agreement of a particular value with the true value. Precision refers to the degree of agreement.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Unit 2: Scientific Processes and Measurement
Unit 0: Observation, Measurement and Calculations
Uncertainty and Significant Figures
Uncertainty and Significant Figures
Scientific Measurement
Chemical Foundations.
Unit 3: Measurement and Calculations
Uncertainty and Significant Figures
Pre-AP Chemistry Measurements and Calculations.
Uncertainty and Significant Figures
Scientific Notation.
Measurement and Significant Figures
Math Toolkit ACCURACY, PRECISION & ERROR.
Uncertainty and Significant Figures
Measurement and Significant Figures
Chemical Foundations.
Scientific Notation.
Uncertainty and Significant Figures
Chemistry Chapter 2 Measurements and Calculations Notes 2.
Uncertainty and Significant Figures
Measurements and Calculations.
Uncertainty and Significant Figures
Scientific Notation In science, we deal with some very LARGE numbers:
Uncertainty and Significant Figures
What are the SI base units for time, length, mass, and temperature?
Scientific Notation.
Uncertainty and Significant Figures
Presentation transcript:

Unit 3: Measurement and Calculations Cartoon courtesy of NearingZero.net

Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative observation consisting of 2 parts consisting of 2 parts

The Fundamental SI Units (le Système International, SI)

SI Prefixes Common to Chemistry PrefixUnit Abbr.Exponent Kilok10 3 Decid10 -1 Centic10 -2 Millim10 -3 Micro  10 -6

Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Why Is there Uncertainty?  Measurements are performed with instruments  No instrument can read to an infinite number of decimal places Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy Accuracy refers to the agreement of a particular value with the true value. Precision refers to the degree of agreement among several measurements made in the same manner. Neither accurate nor precise Precise but not accurate Precise AND accurate

Rules for Counting Significant Figures - Details Nonzero integers always count as significant figures has 4 sig figs.

Rules for Counting Significant Figures - Details Zeros - Leading zeros do not count as significant figures has 3 sig figs has 3 sig figs.

Rules for Counting Significant Figures - Details Zeros -Captive zeros always count as significant figures has 4 sig figs has 8 sig figs has 5 sig figs.

Rules for Counting Significant Figures - Details Zeros Trailing zeros are significant only if the number contains a decimal point has 4 sig figs has 5 sig figs.

Sig Fig Practice #1 How many significant figures in each of the following? m  5 sig figs kg  4 sig figs 100,890 L  5 sig figs 3.29 x 10 3 s  3 sig figs cm  2 sig figs 3,200,000  2 sig figs

Rules for Significant Figures in Mathematical Operations Multiplication and Division: # sig figs in the result equals the number of sig figs in the least precise measurement used in the calculation x 2.0 =  13 (2 sig figs)

Sig Fig Practice # m x 7.0 m CalculationCalculator says:Answer m 2 23 m g ÷ 23.7 cm g/cm g/cm cm x cm cm cm m ÷ 3.0 s m/s240 m/s lb x 3.23 ft lb·ft 5870 lb·ft g x 2.87 mL g/mL2.96 g/mL

Rules for Significant Figures in Mathematical Operations Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement =  18.7 (3 sig figs)

Sig Fig Practice # m m CalculationCalculator says:Answer m 10.2 m g g g 76.3 g 0.02 cm cm cm 2.39 cm L L L709.2 L lb lb lb lb mL mL 0.16 mL mL

In science, we deal with some very LARGE numbers: 1 mole = In science, we deal with some very SMALL numbers: Mass of an electron = kg Scientific Notation

Imagine the difficulty of calculating the mass of 1 mole of electrons! kg x x ???????????????????????????????????

Scientific Notation: A method of representing very large or very small numbers in the form: M x 10 n M x 10 n  M is a number between 1 and 10  n is an integer

Step #1: Insert an understood decimal point. Step #2: Decide where the decimal must end up so that one number is to its left up so that one number is to its left Step #3: Count how many places you bounce the decimal point the decimal point Step #4: Re-write in the form M x 10 n

2.5 x 10 9 The exponent is the number of places we moved the decimal.

Step #2: Decide where the decimal must end up so that one number is to its left up so that one number is to its left Step #3: Count how many places you bounce the decimal point the decimal point Step #4: Re-write in the form M x 10 n 12345

5.79 x The exponent is negative because the number we started with was less than 1.

PERFORMING CALCULATIONS IN SCIENTIFIC NOTATION ADDITION AND SUBTRACTION

4 x x 10 6 IF the exponents are the same, we simply add or subtract the numbers in front and bring the exponent down unchanged. 7 x 10 6

4 x x 10 6 The same holds true for subtraction in scientific notation. 1 x 10 6 Scientific Notation #10

4 x x 10 5 If the exponents are NOT the same, we must move a decimal to make them the same.

4.00 x x 10 5 Student A 40.0 x x 10 5  Is this good scientific notation? NO! = x 10 6 To avoid this problem, move the decimal on the smaller number!

4.00 x x 10 5 Student B.30 x x 10 6  Is this good scientific notation? YES!

A Problem for you… 2.37 x x Scientific Notation #14

2.37 x x Solution… x x x 10 -4