Decay spectroscopy in the region of neutron-rich lead isotopes Andrea Gottardo “Universa Universis Patavina Libertas” Supervisors: Prof. Santo Lunardi,

Slides:



Advertisements
Similar presentations
Decay spectroscopy of neutron- rich Lead isotopes “Universa Universis Patavina Libertas” 1.Experimental details 2.Preliminary results 3.Seniority scheme.
Advertisements

LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Shell model studies along the N~126 line Zsolt Podolyák.
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
Isomeric states in 98 Cd and 98 Ag Andrey Blazhev University of Cologne PRESPEC Decay Physics Workshop January 2011, Brighton, UK.
Coulomb excitation of the band-terminating 12 + yrast trap in 52 Fe IFIC, CSIC – University of Valencia, Spain University and INFN-Sezione di Padova, Italy.
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Nucleon knockout reactions with heavy nuclei Edward Simpson University of Surrey Brighton PRESPEC Meeting 12 th January 2011.
Angular momentum population in fragmentation reactions Zsolt Podolyák University of Surrey.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
Review of PHYSICAL REVIEW C 70, (2004) Stability of the N=50 shell gap in the neutron-rich Rb, Br, Se and Ge isotones Y. H. Zhang, LNL, Italy David.
Xy position from LYCCA Slowed down beams - new perspective for GOSIA scattering experiments at relativistic energies.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Recent Results in Fragmentation Isomer Spectroscopy with RISING Paddy Regan Dept. of Physics University of Surrey Guildford, GU2 7XH, UK
* Spokesperson: Isao Tanihata - Beijing and Osaka Co-spokesperson: Hans Geissel – GSI Chair of Collaboration board: Juha Äystö – Helsinki Co-chair: Christoph.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Proposal: Beta-delayed neutron spectroscopy of Ca.
Coulomb excitation of 127,128 Cd R. Krücken 1, M. Gorska 2, P. Boutachkov 2, A. Dewald 5, R. Gernhäuser 1, A. Jungclaus 4, Th. Kröll 3, D. Mücher 1, F.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
Evolution of Nuclear Structure with the Increase of Neutron Richness – Orbital Crossing in Potassium Isotopes W. Królas, R. Broda, B. Fornal, T. Pawłat,
Lifetime measurement in 74 Ni: probing the core polarisation around the double magic 78 Ni G. de Angelis, D.R. Napoli, E. Sahin, J.J. Valiente-Dobon INFN,
Study of shell evolution around the doubly magic 208 Pb via a multinucleon transfer reaction with an unstable beam Jose Javier Valiente Dobón (LNL-INFN,
Relativistic Coulomb Excitation of Neutron-Rich 54,56,58 Cr Herbert Hübel Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Germany.
N = Z N=Z line coincides with doubly-magic core Single-particle states wrt 100 Sn core Neutron-proton correlations in identical orbitals Neutron-proton.
Neutron-rich lead isotopes provide hints on the role of the effective three-body forces Jose Javier Valiente Dobón Laboratori Nazionali di Legnaro (INFN),
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Production and beta decay lifetimes of heavy neutron-rich nuclei approaching the r-process path Teresa Kurtukian-Nieto Universidad de Santiago de Compostela.
RESULTS: Singles Gamma Spectra  Five gamma energy transitions were  observed with energies739 keV, 822 keV, 712 keV 849 keV and 111 keV γ –γ Coincidence.
Prof. Paddy Regan Department of Physics
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Radioactive beam spectroscopy of 212 Po and 213 At with the EXOGAM array Nick Thompson University of Surrey.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Nuclear Spectrcosopy in Exotic Nuclei Paddy Regan Dept,. Of Physics University of Surrey, Guildford, UK
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Proposal: Beta-delayed neutron spectroscopy of 54 Ca Addendum of IS599.
Observation of new neutron-deficient multinucleon transfer reactions
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Decay studies in Exotic, Neutron- Rich A~200 Nuclei Steven Steer for the Stopped Beam RISING Collaboration Dept. of Physics, University of Surrey Guildford,
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
Exotic neutron-rich nuclei
1 BETA-DELAYED NEUTRON SPECTROSCOPY OF 51,52,53,(54) Ca A. Gottardo, R. Grzywacz, M. Madurga ISOLDE Workshop2015.
Jose Javier Valiente Dobón (INFN-LNL, Italy) Lifetime measurements around the doubly-magic 48 Ca nucleus.
NN2012, San Antonio, May 27 - June 1, 2012 High-seniority states in spherical nuclei: Triple pair breaking in tin isotopes Alain Astier, CSNSM Orsay, France.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Effective 3-body forces: the case of neutron-rich lead isotopes Andrea Gottardo “Universa Universis Patavina Libertas” IVICFA Seminar, Valencia 2013.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Beta-decay spectroscopy towards the r-process path Giovanna Benzoni and A.I. Morales-Lopez (INFN - Milano) 1 Outline: * Region “east” of 208 Pb studied.
Two-phonon octupole collectivity in the doubly-magic nucleus 146 Gd INFN Laboratori Nazionali di legnaro and CERN Isolde Giacomo de Angelis.
Advances in Radioactive Isotope Science (ARIS2014)
Emmanuel Clément IN2P3/GANIL – Caen France
Nuclear excitations in nucleon removal processes
Probing core polarization around 78Ni:
Maria Kmiecik, Giovanna Benzoni, Daisuke Suzuki
ISOLDE Workshop and Users Meeting 2017
Decay spectroscopy of neutron- rich Lead isotopes
Isospin Symmetry test on the semimagic 44Cr
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
108Sn studied with intermediate-energy Coulomb excitation
Presentation transcript:

Decay spectroscopy in the region of neutron-rich lead isotopes Andrea Gottardo “Universa Universis Patavina Libertas” Supervisors: Prof. Santo Lunardi, dott. José Javier Valiente Dobón

Contents 1.Physical motivations: shell model, rapid process 2.Description of the setup 3.Results for neutron-rich lead isotopes 4.Theoretical calculations: need of effective three-body forces 5.Conclusions

Stable  + decay  - decay  decay p decay spontaneous fission Exotic nuclei Exotic nuclei → need of radioactive beams - ISOL (Isolde, Spiral2, SPES, IsacII) - In-flight separation (GSI, MSU, RIKEN)

The nuclear shell model Main tenets of shell model: Atomic-like shell orbits for the nucleons Magic numbers Central mean field (3d harmonic oscillator + SO) and a residual two-body interaction Main tenets of shell model: Atomic-like shell orbits for the nucleons Magic numbers Central mean field (3d harmonic oscillator + SO) and a residual two-body interaction Certain effects become clearer in exotic nuclei: Tensor force 3 body Otsuka et al, Phys. Rev. Lett. 95, (2005) Wiringa and Pieper, Phys. Rev. Lett. 89, (2002) It appeared difficult to define what one should understand by first principles in a field of knowledge where our starting point is empirical evidence of different kinds, which is not directly combinable. N. Bohr, 1952

The Z=82 and beyond N=126 region 216 Pb 212 Pb 218 Pb g 9/2 Presence of isomers involving high-j orbitals νg 9/2, νi 11/2, νj 15/2.Taking advantage of these isomers we want to study the developement of nuclear structure from 212 Pb up to 218 Pb and nearby nuclei Semimagic nuclei : possibility of a full diagonalization in the valence space Good testing ground for SM → 3-body

The rapid process Experimental β-decay data needed around 208 Pb to validate theoretical models. Lifetime measured only up to 215 Pb Beta-decay half-lives for the r-process

The fragmentation reactions Relativistic energies : 1 GeV A Abrasion: fast process, adiabatic behaviour of spectators Ablasion: slower process, evaporation of particles for de-excitation H. in (2005) spectators participants Very low cross sections!

FRS-Rising at GSI: stopped beam campaign Target 2.5 g/cm 2 Be Deg. S1: Al 2.0 g/cm 2 MONOCHROMATIC Deg S2: Al 758 mg/cm 2 S1 S2 S3 S4 15 CLUSTERs x 7 crystals ε γ = 11% at 1.3MeV Beam: 238 1GeVA 9 DSSSD, 1mm thick, 5x5 cm 2 16x16 x-y strips Experimental setup

Separation method and particle identification TOF → Velocity β x 2, x 4 → Bρ ΔE MUSIC → Z

218 Pb 217 Bi 211 Tl Nuclei populated in the fragmentation 213 Tl 219 Bi 213 Pb 1 GeVA 238 U beam from UNILAC-SIS at 10 9 pps

Implantation setup: RISING, DSSSD 9 DSSSD, 1mm thick, 5x5 cm 2 16x16 x-y strips Active stopper 15 CLUSTERs x 7 crystals, ε γ = 11% at 1.3MeV RISING CLUSTERS DSSSD SCI43 e γ RISING DSSSD fragment Pietri et al., Nucl. Instr. Meth. B261, 79 (2007) Kumar et al., Nucl. Instr. Meth. A598, 754 (2009)

Isomer spectroscopy 214 Pb

212,214,216 Pb: 8 + isomer

γγ coincidences 214 Pb The 8 + →6 + transition is not observed because fully converted with atomic electrons 6.2(3) μs

210 Pb The 8 + isomer is a seniority isomer, involving neutrons in the 2g 9/2 214 Pb 212 Pb 216 Pb Experimental level schemes t 1/2 = 0.201(17) μs t 1/2 = 6.2(3) μst 1/2 = 6.0(8) μst 1/2 = 0.4(4) μs

The seniority scheme Nucleons in a valence j n configuration behave according to a seniority scheme: the states can be labelled by their seniority ν For even-even nuclei, the 0 + ground state has seniority ν = 0, while the 2 +, 4 +, 6 +, 8 + states have ν = 2 In a pure seniority scheme, the relative level energies do not depend on the number of particles in the shell j (2g 9/2 ) (2g 9/2 ) (2g 9/2 ) (2g 9/2 ) 8 ν = 0 ν = 2 SENIORITY SCHEME

Shell-model calculation Main «ingredients» of shell model: Valence space Realistic hamiltonian renormalized Shell-model codes (Antoine, Nathan) P Q Model space P Excluded space Q N=126

Warbourton and Brown PRC 43, 602 (1992) 208 Pb is a doubly-magic nucleus (Z=82, N=126). For neutron-rich Lead isotopes, the N=6 major shell is involved Kuo-Herling interaction: Valence space From 2 neutrons ( 210 Pb) to 10 neutrons ( 218 Pb)

Calculations with Antoine and Nathan codes and K-H interaction Shell Model calculations Kuo-Herling

210 Pb 212 Pb 214 Pb 216 Pb Isomer t 1/2 (μs)0.20 (2)6.0 (8)6.2 (3)0.40 (4) B(E2) e 2 fm 4 Exp.47(4)1.8(3) B(E2) e 2 fm 4 KH B(E2) calculated considering internal conversion coefficients, and a keV energy interval for unknown transitions. Reduced transition prob. B(E2) Large discrepancies: -Seniority scheme -Shell model KH Large discrepancies: -Seniority scheme -Shell model KH e ν = 0.8e E : transition energy α : internal conversion τ : lifetime Need to introduce state- dependent effective charges ?

When an interaction is adapted to a model space, it has to be RENORMALISED Renormalization(I) The renormalisation takes into account the coupling to the core excitation modes, as the giant quadrupole resonance (around 10 MeV) Constant effective charges e ν ~ 0.5e, e π ~ 1.5e Isovector Isoscalar Bohr and Mottleson, Nuclear Structure (1975) Dufour and Zuker PRC 54, 1641 (1996)

Renormalization(II) N=126 p-h core break Z=82 p-h core break Z=82 N=126 h 11/2 i 13/2 2f 7/2 2g 9/ ν shells above N=126 π shells above Z=82 But there also other coupling modes to the core: Quasi-SU(3) scheme particle-hole excitations (few MeV) But there also other coupling modes to the core: Quasi-SU(3) scheme particle-hole excitations (few MeV) BUT p-h core excitations do couple to excited states: need to explicitly renormalize these excitations Standard SM calculations: CONSTANT eff. Charges (example: e ν = 0.8e) to renormalize the E2 operator

Renormalization(III) Need to consider effective three-body forces for the hamiltonian and two-body terms for the E2 operator One body Two body Three body X X One body Two body Poves and Zuker, Phys Rep. 71, 141 (1981) Poves et al., Phys. Lett. B82, 319 (1979) At the moment, this is too difficult, so we explicitly break the 208 Pb core in the calculation allowing p-h excitations GQR + coupling to 2 + from the core Z=82 N=126 h 11/2 i 13/2 2f 7/2 2g 9/2 e ν ~ 0.5e, e π ~ 1.5e

Exp. data g 9/2 + ν shells above + core exc. (3 body) g 9/2 + ν shells above g 9/2 Effective 3-body interaction: results The explicit coupling to the core restores a seniority-like behaviour (midshell symmetry) and also justifies e ν = 0.8e from the standard e ν = 0.5e Lee interaction for evaluating three- body effects, e ν = 0.5e, e π = 1.5e

A glimpse of the other results

Experiment with radioactive beam, with the in-flight technique. Several experimental challenges overcome. State-of-the-art experimental devices. The neutron-rich region along Z = 82 was populated, enabling to study the nuclear structure in this region up to now unknown due to experimental difficulties The observed shell structure seems to follow a seniority scheme. However, a closer look reveals that the B(E2) values have an unexpected behaviour. B(E2) values are a sensitive probe to understand in detail the features of the nuclear force The mechanism of effective 3-body forces is general, and could be relevant also for other parts of the nuclide chart (Sn?, Ni?, Cd?). Several isotopes ( 213 Pb, 210 Hg) seem to present an unexpected deviation from standard theoretical predictions. Conclusions

A.Gottardo, J.J. Valiente-Dobon, G. Benzoni, R. Nicolini, E. Maglione, A. Zuker, F. Nowacki A. Bracco, G. de Angelis, F.C.L. Crespi,F. Camera, A. Corsi, S. Leoni, B. Million, O. Wieland, D.R. Napoli, E. Sahin, S.Lunardi, R. Menegazzo, D. Mengoni, F. Recchia, P. Boutachkov, L. Cortes, C. Domingo-Prado,F. Farinon, H. Geissel, J. Gerl, N. Goel, M. Gorska, J. Grebosz, E. Gregor, T.Haberman,I. Kojouharov, N. Kurz, C. Nociforo, S. Pietri, A. Prochazka, W.Prokopowicz, H. Schaffner,A. Sharma, H. Weick, H-J.Wollersheim, A.M. Bruce, A.M. Denis Bacelar, A. Algora,A. Gadea, M. Pf¨utzner, Zs. Podolyak, N. Al-Dahan, N. Alkhomashi, M. Bowry, M. Bunce,A. Deo, G.F. Farrelly, M.W. Reed, P.H. Regan, T.P.D. Swan, P.M. Walker, K. Eppinger,S. Klupp, K. Steger, J. Alcantara Nunez, Y. Ayyad, J. Benlliure, Zs.Dombradi E. Casarejos,R. Janik,B. Sitar, P. Strmen, I. Szarka, M. Doncel, S.Mandal, D. Siwal, F. Naqvi,T. Pissulla,D. Rudolph,R. Hoischen, P.R.P. Allegro, R.V.Ribas, and the Rising collaboration Università di Padova e INFN sezione di Padova, Padova, I; INFN-LNL, Legnaro (Pd), I; Università degli Studi e INFN sezione di Milano, Milano, I; University of the West of Scotland, Paisley, UK; GSI, Darmstadt, D; Univ. Of Brighton, Brighton, UK; IFIC, Valencia, E; University of Warsaw, Warsaw, Pl; Universiy of Surrey, Guildford, UK; TU Munich, Munich, D; University of Santiago de Compostela, S. de Compostela, E; Univ. Of Salamanca, Salamanca, E; Univ. of Delhi, Delhi, IND; IKP Koeln, Koeln, D; Lund University, Lund, S; Univ. Of Sao Paulo, Sao Paulo, Br; ATOMKI, Debrecen, H. Collaboration

Mercury isotopes (II): 210 Hg EnergyArea corrected (4) (8) (7) (7) Δt = 0.12 – 5.50 μs t 1/2 (553 keV)= 1.1 (4) μs t 1/2 (643 keV)= 1.2(1) ns t 1/2 (663 keV)= 1.3(3) ns

Mercury isotopes (I) Z = 82 N = 126 Valence space

Bismuth isotopes (I)

Bismuth isotopes (II) 211 Bi 217 Bi B(E2; 25/2 - →21/2 - ) EXP. 8 (2) e 2 fm (3.6) e 2 fm 4 B(E2; 25/2 - →21/2 - ) KH 92 e 2 fm e 2 fm 4 e ν = 0.8, e π = 1.5 Z = 82 N = 126 Valence space

213 Pb: a strange case What are we observing in 213 Pb ? More than one isomer, but appearantly NOT the seniority isomer

γγ coincidences 212 Pb 214 Pb 216 Pb

Charge state identification Formation of many charge states owing to interactions with materials  Isotope identification is more complicated  Need to disentangle nuclei that change their charge state after S2 deg. (Bρ) TA-S2 – (Bρ) S2-S4 B ρ 1 - B ρ 2 Z DQ=0 DQ=+1 DQ=-1 DQ=-2

238 U charge-state problem Mocadi simulation LISE++ simulation

1 GeVA 238 U beam from UNILAC-SIS at 10 9 pps 206 Hg 210 Hg 209 Tl 213 Tl 212 Pb 218 Pb 215 Bi 219 Bi A/Z Z Nuclei populated in the fragmentation

Experimental setup: FRS Fragment position: TPC, MWPC, Scintillators Time Of Flight TOF: Scintillators Atomic number: MUSIC 72 m H. Geissel et al., Nucl. Instr. Meth. B70, 286 (1992)