Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )

Slides:



Advertisements
Similar presentations
Using Inductive Reasoning to Make Conjectures 2-1
Advertisements

Do Now Try to extend the following patterns. What would be next? 1.January, March, May …. 2.7, 14, 21, 28, …. 3.1, 4, 9, 16, …. 4.1, 6, 4, 9, 7, 12, 10,
Lesson 2.1 Inductive Reasoning in Geometry
Objectives Students will…
Using Inductive Reasoning to Make Conjectures
Geometry Using Inductive reasoning to Make Conjectures
When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process.
Inductive Reasoning.  Reasoning based on patterns that you observe  Finding the next term in a sequence is a form of inductive reasoning.
What is Critical Thinking?
Patterns and Inductive Reasoning
Geometry Notes 1.1 Patterns and Inductive Reasoning
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Inductive/Dedu ctive Reasoning Using reasoning in math and science.
Using Inductive Reasoning to Make Conjectures 2-1
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Using Inductive Reasoning to Make Conjectures 2-1
Patterns & Inductive Reasoning
Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January,
1.2 Patterns and Inductive Reasoning. Ex. 1: Describing a Visual Pattern Sketch the next figure in the pattern
1.2 Inductive Reasoning. Inductive Reasoning If you were to see dark, towering clouds approaching what would you do? Why?
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Warm Up Boxed In Three boxes contain two coins each. One contains two nickels, one contains.
1.1 Patterns and Inductive Reasoning
Chapter Using inductive reasoning to make conjectures.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
Entry Task Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Reasoning, Conditionals, and Postulates Sections 2-1, 2-3, 2-5.
Lesson 1.2 Inductive Reasoning Pages Observe Look for patterns Develop a hypothesis (or conjecture) Test your hypothesis.
Megan FrantzOkemos High School Math Instructor.  Use inductive reasoning to identify patterns and make conjectures.  Determine if a conjecture is true.
2.1 Inductive Reasoning Objectives: I CAN use patterns to make conjectures. disprove geometric conjectures using counterexamples. 1 Serra - Discovering.
2.1 Using Inductive Reasoning to Make Conjectures.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Section 2.1: Use Inductive Reasoning Conjecture: A conjecture is an unproven statement that is based on observations; an educated guess. Inductive Reasoning:
Patterns and Inductive Reasoning. Inductive reasoning is reasoning that is based on patterns you observe. If you observe a pattern in a sequence, you.
Lesson 1-7 Inductive Reasoning. Inductive Reasoning – making conclusions based on patterns you observe. Conjecture – conclusion you reach by inductive.
2.1 Inductive Reasoning Essential Question:
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
UNIT 2 Geometric Reasoning 2.1
3 – 6 Inductive Reasoning.
02-2: Vocabulary inductive reasoning conjecture counterexample
OPENER.
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Vocabulary inductive reasoning conjecture counterexample
2.1 Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Five step procedure for drawing conclusions.
Patterns and Inductive Reasoning
Chapter 2: Reasoning in Geometry
Drill 1, 3, 5, 7, 9, __, __ 2, 5, 8, 11, 14, __, __ -3, -6, -10, -15, __ , , , __ OBJ: SWBAT use inductive reasoning in order to identify.
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Notes 2.1 Inductive Reasoning.
UNIT 2 Geometric Reasoning 2.1
Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Patterns and Inductive Reasoning
2-1: Use Inductive reasoning
Using Inductive Reasoning to Make Conjectures
Lesson 2.1 Use Inductive Reasoning
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
2-1 Inductive Reasoning and Conjecture
Presentation transcript:

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures How do you use inductive reasoning to identify patterns and make conjectures? How do you find counterexamples to disprove conjectures? Essential Questions

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January, March, May,... The next month is July. Alternating months of the year make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1B: Identifying a Pattern 7, 14, 21, 28, … The next multiple is 35. Multiples of 7 make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1C: Identifying a Pattern In this pattern, the figure rotates 90° counter- clockwise each time. The next figure is.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process of reasoning that a rule or statement is true because specific cases are true. You may use inductive reasoning to draw a conclusion from a pattern. A statement you believe to be true based on inductive reasoning is called a conjecture.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Complete the conjecture. Example 2: Making a Conjecture The sum of two positive numbers is ?. The sum of two positive numbers is positive. List some examples and look for a pattern = = , ,000,017 = 1,003,917

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Complete the conjecture. Example 2B: Making a Conjecture The number of lines formed by 4 points, no three of which are collinear, is ?. Draw four points. Make sure no three points are collinear. Count the number of lines formed: The number of lines formed by four points, no three of which are collinear, is 6.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Example 3: Biology Application The cloud of water leaving a whale’s blowhole when it exhales is called its blow. A biologist observed blue-whale blows of 25 ft, 29 ft, 27 ft, and 24 ft. Another biologist recorded humpback- whale blows of 8 ft, 7 ft, 8 ft, and 9 ft. Make a conjecture based on the data. Heights of Whale Blows Height of Blue-whale Blows Height of Humpback-whale Blows 8789

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Example 3: Biology Application Continued The smallest blue-whale blow (24 ft) is almost three times higher than the greatest humpback- whale blow (9 ft). Possible conjectures: The height of a blue whale’s blow is about three times greater than a humpback whale’s blow. The height of a blue-whale’s blow is greater than a humpback whale’s blow.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures To show that a conjecture is false, you have to find only one example in which the conjecture is not true. This case is called a counterexample. To show that a conjecture is always true, you must prove it. A counterexample can be a drawing, a statement, or a number.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Inductive Reasoning 1. Look for a pattern. 2. Make a conjecture. 3. Prove the conjecture or find a counterexample.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Show that the conjecture is false by finding a counterexample. Example 4A: Finding a Counterexample For every integer n, n 3 is positive. Pick integers and substitute them into the expression to see if the conjecture holds. Let n = 1. Since n 3 = 1 and 1 > 0, the conjecture holds. Let n = –3. Since n 3 = –27 and –27  0, the conjecture is false. n = –3 is a counterexample.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Show that the conjecture is false by finding a counterexample. Example 4B: Finding a Counterexample Two complementary angles are not congruent. If the two congruent angles both measure 45°, the conjecture is false. 45° + 45° = 90°

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Summary D-What did we do? L-What did I learn? I-What was interesting? Q-What questions do I have?