Decay spectroscopy for nuclear astrophysics:  - and  -delayed p-decay Livius Trache Texas A&M University College Station, TX, USA Nuclear Physics for.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Marina Barbui Trento, Italy, April 7-11, 2014
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
(p,g) reaction via transfer reaction of mirror nuclei and direct measurement of 11C(p,g)12N at DRAGON Bing Guo For nuclear astrophysics group China Institute.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Teresa Kurtukian-Nieto Centre d’Etudes Nucléaires de Bordeaux Gradignan Precision half-life determination of the superallowed 0 + → 0 + β + -emmiters 42.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Study of exotic nuclei.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Nuclear Physics for Astrophysics with Radioactive Beams Livius Trache Texas A&M University EURISOL Workshop ECT * Trento, Jan
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Nuclear physics input to astrophysics: e.g.  Nuclear structure: Masses, decay half lives, level properties, GT strengths, shell closures etc.  Reaction.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Recent Results for proton capture S-factors from measurements of Asymptotic Normalization Coefficients R. Tribble Texas A&M University OMEG03 November,
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Single nucleon transfer between p- shell nuclei around 10 MeV/u - for nuclear astrophysics Livius Trache Cyclotron Institute, Texas A&M University ATLAS.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
 angular correlations LPC-Team : G. Ban, G. Darius, P. Delahaye, D. Durand, X. Flechard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, A. Mery, O. Naviliat,
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
H. Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics The rp process in X-ray bursts.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
Nuclear Physics in X-ray binaries the rp-process and more Open questions Nuclear physics uncertainties status of major waiting points reaction rates mass.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
g-ray spectroscopy of the sd-shell hypernuclei
Technical solutions for N=Z Physics David Jenkins.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Proton emission from deformed rare earth nuclei Robert Page.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
David Mountford University of Edinburgh
(Some) Current Topics in Nuclear Astrophysics
Physics opportunities with heavy-ion detectors in the CR
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
New proposal for the BRIKEN campaign
Programma di misure: fasci e bersagli da utilizzare
the s process: messages from stellar He burning
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
(g,z) Breakup Experiments Charged Particles in the Final State
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Implantation detector as active stopper Rakesh Kumar, P. Doornenbal, I
Presentation transcript:

Decay spectroscopy for nuclear astrophysics:  - and  -delayed p-decay Livius Trache Texas A&M University College Station, TX, USA Nuclear Physics for Astrophysics V, Eilat, Israel, April 3-8, 2011

Nuclear Physics for Astrophysics Indirect methods with RIB Indirect methods in NPA with or w/o RIB –A. Coulomb dissociation –B. Transfer reactions (ANC method) –C. Breakup of loosely bound nuclei –D. Spectroscopy of resonances:  -decay, transfer reactions, resonant elastic scatt., etc Decay spectroscopy –E. Trojan Horse Method –… 2

= studied at TAMU 12 C 13 C 13 N 15 N 15 O 14 N 17 O 17 F 16 O 18 F 18 O 14 O 19 Ne 18 Ne 13 O 11 C 12 N 8B8B 7 Be 9C9C 10 C 10 B 11 N 11 B 9B9B 8 Be 22 Ne 21 Ne 9 Be 23 Na 17 Ne 16 F 15 F 22 Na 20 Na 24 Al 23 Al 25 Al 24 Mg 23 Mg 22 Mg 21 Mg 20 Mg 19 Na 19 F 20 Ne 25 Si 24 Si 26 Si 15 C 14 C 27 Al 26 Al 28 Si 27 Si 29 Si 26 Mg 25 Mg 27 P 26 P 28 P 30 P 29 P 31 P 28 S 27 S 29 S 31 S 30 S 32 S 32 Ar 31 Ar 33 Ar 35 Ar 34 Ar 36 Ar 31 Cl 30 Cl 32 Cl 34 Cl 33 Cl 35 Cl 34 S 33 S = planned 12 O 16 Ne 22 Al 23 Si 25 P 21 Al 30 Si (p,n) possible stable used at TAMU (p,2n) possible 21 Na also 38 Ca, 46 V, 57 Cu, 62 Ga, … 14 F p-shell : direct component dominant or important sd-shell : resonant components dominant

Decay spectroscopy Beta- and beta-delayed proton-decay & IAS in T z =-3/2 nuclei Isospin mixing GT strength distribution Explosive H-burning in novae 22 Na depletion in novae 23 Al→ 23 Mg*  22 Na(p,  ) 23 Mg* & 22 Mg(p,  ) 23 Al bottleneck r. in novae 31 Cl→ 31 S*  30 P(p,  ) 31 S* See Jordi’s list!

Radius Energy p Coulomb Barrier Nuclear Potential Resonant Capture a two-step process Same compound system: 23 Mg pp  Decay spectroscopy Resonant contributions to the reaction rate: Need energy, J r and resonance strength SpSp  + 23 Mg  23 Mg *  22 Na+p 23 Mg 23 Al 5/2 +, 7/2 +  / /2 + Conditions: Q EC >S p +2m e c 2 J=3/2+, 5/2+, 7/2+ Selection rules  =(2J+1)/(2j+1)(2I+1)b  b p * 

NeNa cycle Explosive H-burning in novae: “ 22 Na puzzle” - what are the stellar reaction rates for the 22 Mg(p,  ) 23 Al and 22 Na(p,  ) 23 Mg? - novae: explosive H-burning of accreting material in binaries star-WD. ~ 30/yr. -  rays from the decay of long-lived isotopes like 26 Al have been detected - E=1.275 MeV  ray following the decay of 22 Na predicted (Clayton, Hoyle), but not observed by space gamma-ray telescopes 22 Na depletion in novae: how does it happen? Q: why?! Novae model(s) inappropriate?! Nuclear data incorrect?! Not enough 22 Na produced or depleted?! T 1/2 =2.6 yr 24 Si NPA V poster by A Banu

MARS Primary beam 24 48A MeV – K500 Cycl Primary target LN 2 cooled H 2 gas p=1.6-2 atm Secondary beam A MeV 24 Mg 48A MeV Purity: 90%, or >99% after en degrader Intensity: ~ 4000 pps First time - very pure & intense 23 Al 23 Al 40A MeV In-flight RB production (p,2n) reaction 23 Al

Isotope selection with MARS Final cut with focal plane slits E Pos ~ q/m 24 Al used for en and eff calibration of Ge detector to E  =8 MeV N=Z-3 N=Z-1 N=Z-2

 decay study of pure RB samples

23 Al  -  coincidence spectrum IAS BGO

23 Al  -decay results First clean and intense 23 Al source Found decay scheme established g.s. J  =5/2 + (not 1/2 + ) [VE Iacob ea, PRC 74, Oct 2006; also A. Ozawa ea, PRC 74, Aug 2006 from magn mom meas]  22 Mg(p,  ) 23 Al not important for depletion of 22 Na in novae absolute branching ratios (not easy or common!) measured T 1/2 =446(4) ms (<1% accuracy) - w.  -ray multiscaling and absolute log ft identified IAS E*=7802.9(5) keV by logft=3.31(2) – meas! used IMME to get new 23 Al mass  S p ( 23 Al)=143(3) keV –Note: after mass meas in Jyvaskyla, became best IMME check! and S p =141.11(43) keV Located IAS & state at E*=7787 keV – important resonance in 22 Na(p,  ) 23 Mg

23 Al  -decay results First clean and intense 23 Al source Found decay scheme established g.s. J  =5/2 + (not 1/2 + ) [VE Iacob ea, PRC 74, Oct 2006; also A. Ozawa ea, PRC 74, Aug 2006 from magn mom meas]  22 Mg(p,  ) 23 Al not important for depletion of 22 Na in novae absolute branching ratios (not easy or common!) measured T 1/2 =446(4) ms (<1% accuracy) - w.  -ray multiscaling and absolute log ft identified IAS E*=7802.9(5) keV by logft=3.31(2) – meas! used IMME to get new 23 Al mass  S p ( 23 Al)=143(3) keV –Note: after mass meas in Jyvaskyla, became best IMME check! and S p =141.11(43) keV (A. Saastamoinen ea, PRC 80, 2009) Located IAS & state at E*=7787 keV – important resonance in 22 Na(p,  ) 23 Mg

23 Al  -decay results First clean and intense 23 Al source Found decay scheme established g.s. J  =5/2 + (not 1/2 + ) [VE Iacob ea, PRC 74, Oct 2006; also A. Ozawa ea, PRC 74, Aug 2006 from magn mom meas]  22 Mg(p,  ) 23 Al not important for depletion of 22 Na in novae absolute branching ratios (not easy or common!) measured T 1/2 =446(4) ms (<1% accuracy) - w.  -ray multiscaling and absolute log ft identified IAS E*=7802.9(5) keV by logft=3.31(2) – meas! used IMME to get new 23 Al mass  S p ( 23 Al)=143(3) keV –Note: after mass meas in Jyvaskyla, became best IMME check! and S p =141.11(43) keV Located IAS & state at E*=7787 keV – most important resonance in 22 Na(p,g) 23 Mg

23 Al  no-BGO vs BGO shield 23 Mg ?!% p 451 gs IAS, T=3/

23 Mg 7803 IAS 5/ (7/2) / / (3,5/2) /2+ NO! / /2+ 0 3/2+ 22 Na Sp=7580 keV β+β+ β+β+ IAS: ft=2140 s +/-5% 22 Na(p,  ) 23 Mg resonances Most important:  7787 =__._?! meV 23 Al 0.446(4)s Q ec =12240keV 5/2+ 22 Mg(p,  ) 23 Al p ?!% Proton br. total=?!% Tighe ea, LBL 1995 Perajarvi ea, JYFL 2000 E=207 keV =>  E=16 keV VE Iacob, et al., PRC 74, Oct & Y Zhai thesis Unusually strong isospin mixing! (?!)

thermocooler  =80 mm OD  150 mm >110 mm connectors Energy degrader 18” dia chamber 64 mm 275 mm  -detector – thick Si det 1 mm p-detector – v. thin DS Si strip 65 or 45  m W1-65 BB2-45  -detector – HPGe 70% effic Pulsed beam E=E p +kE recoil + MARS implantation station Method: implantation in very thin Si detectors!

proton  HI Signal=E p +  E  Signal=  E  Si 1000  m Si strip 61  m Gamma-ray measure simultaneously:  -proton and  coinc. Si stops protons: ½ 65  m E p <1.5 MeV “  -proton mode” “HI telescope mode” – control implantation Signal=  E HI Signal=E  17  m  p/p=+/-0.25%  E (p) E (  ) 36 ° 30 ° 0°0°

E=223 keV IAS 23 Al  -delayed p-decay sp – after bkg subtraction Gamow window Antti Saastamoinen et al., PRC accepted “world record” Resonances for 22 Na(p,  ) 23 Mg

Eres (keV) Eexc (keV)br-p (of 100 beta) (3)% IAS ?! (4)% (1)% (2)% (2)% (3)% (1)% total1.22(5)% /2 +, T=1/2 23 Mg 22 Na + p 7787 (7/2) + IAS, 5/2 + T=3/2 3.7% 78.2% 18.0% p (5/2, 7/2) + 5/ Al Most important resonance: E res =207 keV  =1.4 meV (+.5,-.4)  from  =10(3) fs Jenkins ea, PRL /2 + 5/2 +  allowed GT Superallowed F Rare cases of  & p-branching measured simultaneously ! ?!  =(2J+1)/(2j+1)(2I+1)b  b p * 

Results 22 Na(p,  ) 23 Mg Most important resonance: E res =207 keV, J  =(7/2) +, T=1/2  =1.4 meV (+.5/-.4) - using our branchings and t 1/2 =10(3) fs from Jenkins et al. (PRL 2004) -direct meas, p on radioactive 22 Na target:  =1.4(3) meV – Stegmueller et al. NPA1996 New resonances found: 267, 337 keV No resonance at E p =198 keV - as suggested in Jenkins ea, PRL 92 (2004)  =5.7(16) meV – Salaska et al. PRL 2010

Background subtracted using decay of 22 Mg (not a proton emitter) Full disclosure!

23 Al  p meas with Si det Low energy beta background hurts!

Future: ASTROBOX E Pollacco (CEA Saclay) proposed: Gas detector w MICROMEGAS Low proton energies (~1-200 keV), good resolution (5-10%) Reduced  background Two weeks ago emitted proton electrons beam

Run0311B: 23 Al  p-decay with ASTROBOX Implantation control Outer-far Center detector Outer + center 223 IAS 206 keV betas Off-beam spectrum 337

23 Al  p meas with Si det Low energy beta background hurts!

A few images are worth a thousand words! W1-65 det 16 x 16 strips 3.1 mm BB2-45 det 24 x 24 strips, 1 mm

Radius Energy p Coulomb Barrier Nuclear Potential Resonant Capture a two-step process Same compound system: 31 S pp  Decay spectroscopy Resonant contributions to the reaction rate: Need energy, J r and resonance strength SpSp  + 31 S  31 S *  30 P+p 31 S 31 Cl 1/2 +, 3/2 +  /2 + 3/2 + Conditions: Q EC >S p +2m e c 2 J=1/2+, 3/2+, 5/2+

MARS Primary beam 32 40A MeV – K500 Cycl Primary target LN 2 cooled H 2 gas p=2 atm Secondary beam A MeV 32 S 40A MeV Purity: > 85 % (at target det) Intensity: ~ pps difficult - pure & intense 31 Cl 31 Cl 34A MeV In-flight RB production (p,2n) reaction 31 Cl

31 Cl production and separation 31 Cl 32 Cl 29 S Energy (a.u.) Position (0.1 mm) = q/m

31 Cl  -decay - status 2006 Old:    =150(25) ms

31 Cl  decay IAS

31 Cl  -decay - status 2006/present exp Old:    =150(25) ms New: T 1/2 = 190(1) ms S p =6.133 MeV

Proton Detectors The W1 Detector: –Thickness: 65 μm –Number of Strips: 16 –Width of Strips: 3.1mm –Detection Volume: ~0.625 mm 3 Used in our 23 Al 2007 and 31 Cl 2007 Experiments The BB2 Detector: –Thickness: 45 μm –Number of Strips: 24 –Width of the Strips: 1mm –Detection Volume: ~0.045 mm 3 Used in our 31 Cl 2008 and 23 Al 2009 Experiments Both made by Micron Semiconductor LTD. W1 BB2

Lowering  background: W1-65 –Large amount of background in the regions of 500 keV or lower BB2-45 –Only part of the statistics are shown, but Resolution is visibly better And the minimum energy threshold goes below 300 keV Lose efficiency at E p > 1.5 MeV Conclusions: –Thinner detector with thinner strips was better at measuring the proton energies as low as keV W1 BB2 Un-luckily: no new states here!

31 Cl  -decay results First clean and intense 31 Cl source established  -decay scheme determined relative branching ratios measured T 1/2 =190(1) ms (<1% accuracy) identified IAS E*=6279.5±0.3±1.5 (syst) keV and its decay used IMME to get new, more precise 31 Cl mass ME( 31 Cl)=-7064(8) keV  Q EC =11,980(8) keV and S p ( 31 Cl)=289(8) keV (imp for 30 S(p,  ) 31 Cl !) found precise energy of E * =6256(1) keV  E res =123(2) keV – important reson in 30 P(p,  ) 31 S did not find IAS proton branching (at E p =146 keV – very difficult !!)

Results  -delayed p-decay Technique works well – can go to E p ~100 keV and, maybe, lower Can work with lifetimes ~100 ms or less Very selective: can separate well beam cocktails (by implantation depths) Very sensitive: could obtain results for 21 Mg, 29 S at rates ~ 1-10 pps in 8 hrs Could study very weak branches in 20 Mg … Strengths: –Good isotope separation (MARS) –In-flight production: need MeV/u (can be implanted) –ASTROBOX opens new possibilities

Collaborators A Banu, JC Hardy, VE Iacob, M McCleskey, E. Simmons, BT Roeder, A Spiridon, G Tabacaru, RE Tribble – Cyclotron Institute, Texas A&M University PJ Woods, T Davinson, G. Lotay – Univ of Edinburgh J Aysto, A Saastamoinen, A Jokinen – Univ of Jyvaskyla MA Bentley – Univ of York L Achouri – LPC Caen E Pollacco, A Obertelli et al. –CEA Saclay