KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.

Slides:



Advertisements
Similar presentations
R.Shanidze, B. Herold, Th. Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece Study of data filtering algorithms.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope G. Bourlis, N. A. B. Gizani, A. Leisos, A. G. Tsirigotis,
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
P. Sapienza, NOW 2010 The KM3NeT project  Introduction & Main objectives  The KM3NeT Technical Design Report  Telescope physics performance  New developments.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
KM3NeT ESFRI/PSE-WG meeting, 3 December 2013, Brussels Maarten de Jong & Paschal Coyle on behalf of KM3NeT 1 The next generation neutrino telescope in.
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University.
C.Distefano Barcelona July 4 – 7, 2006 LNS Detection of point-like neutrino sources with the NEMO-km 3 telescope THE MULTI-MESSENGER APPROACH TO UNIDENTIFIED.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
S. E. Tzamarias The project is co-funded by the European Social Fund & National Resources EPEAEK-II (PYTHAGORAS) KM3Net Kick-off Meeting, Erlangen-Nuremberg,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
Neutrinos as Cosmic Messengers in the Era of IceCube, ANTARES and KM3NeT Uli Katz ECAP / Univ. Erlangen Vulcano Workshop 2012 Frontier Objects.
WP2 meeting, Oct 2006, CPPM Claudine Colnard - NIKHEF Claudine Colnard, Ronald Bruijn, Eleonora Presani, Siemen Meester, Paul Kooijman (presented by Maarten.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
Tools and Methods for Underwater, High Energy Neutrino Telescopy A.G.Tsirigotis, A. Leisos, S.E.Tzamarias Physics Laboratory, School of Science and Technology,
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
Agustín Sánchez-Losa IFIC (CSIC-Universitat de València) Transient sources, like AGNs or Gamma Ray Bursters, are among.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
KM3NeT ‑ The Next Generation Neutrino Telescope Alexander Kappes IceCube Particle Astrophysics Symposium Union South, Madison, May 13, 2013.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
Time over Threshold electronics for an underwater neutrino telescope G. Bourlis, A.G.Tsirigotis, S.E.Tzamarias Physics Laboratory, School of Science and.
The ORCA Letter of Intent Oscillation Research with Cosmics in the Abyss ORCA Antoine Kouchner University Paris 7 Diderot- AstroParticle and Cosmology.
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
IceCube & ANTARES Constraints to the IceCube signal from ANTARES & Combined Point Source Analysis IceCube/ANTARES J. Brunner CPPM 20/01/2015.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Antares status and plans  Reminder  Project status  Plans M. de Jong.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Neutrino telescopes: ANTARES and KM3NeT Maarten de Jong Programme: Group composition (current): 6+2 staff, 4 post-doc, 4 PhD. Vidi 1, Veni 1+1.
Antares/KM3NeT M. de Jong. Antares  2000NL joined collaboration (3.3 M€)  2006 ‒ 2008construction  2006 ‒ todaydata taking 24h/day  2012MoU signed.
Status report Els de Wolf Annual Meeting 2011, Nikhef.
Status Antares & KM3NeT SAC 2010 Maarten de Jong.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Deep-sea neutrino telescopes
KM3NeT multi-km3 neutrino telescope: perspectives
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Pasquale Migliozzi INFN Napoli
White Rabbit in KM3NeT Mieke Bouwhuis NIKHEF 9th White Rabbit Workshop
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Astronomy session: a summary
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Calculation of detector characteristics for KM3NeT
discovery potential of Galactic sources
Prospects and Status of the KM3NeT Neutrino Telescope E. Tzamariudaki
ICRC2011, 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011
Presentation transcript:

KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in the Mediterranean 1

Introduction Discovery and subsequent observation of high-energy neutrino sources in Universe – interface between astrophysics and particle physics pillar of multi-messenger approach – synergy with Earth & Sea sciences (not in this talk) KM3NeT is a new Research Infrastructure – network of cabled observatories – located in deep waters of Mediterranean Sea – hosting multi-km 3 neutrino telescope 2

Astro-Particle Physics p, He,..  cosmic rays gamma rays neutrinos particle accelerator? 3

Detection principle muon wave front ~ km ~ 100 m neutrino interaction time resolution1ns position resolution10cm angular resolution 0.1 deg 4 Water properties

KM3NeT Architecture neutrino telescope shore station remote access to data remote operation onoff computer center  1 Tb/s 10  100 Mb/s

Site Before:One large Research Infrastructure interest from France, Italy and Greece to host complete infrastructure Now:Strong case for distributed Research Infrastructure agreement that France, Italy and Greece host part of infrastructure 6 “Advantage of additional funds and human resources resulting from using the three available sites significantly outweighs any financial or scientific advantage from using one of the sites.”

KM3NeT proudly presents 7

Design ~ 600 m Optical module Launcher vehicle ‒31 x 3” PMTs ‒low-power HV ‒LED & piezo inside ‒FPGA readout ‒White Rabbit ‒DWDM ‒rapid deployment ‒autonomous unfurling ‒recoverable 8 17”

ETEL 3-inch PMTs Key features: – timing≤ 4.5 ns (FWHM) – QE≥ 25-30% – collection efficiency≥ 90% – photon counting purity100% (by hits, up to 7) – price/cm 2 ≤ 10” PMT ETEL D792 Hamamatsu R12199HZC XP53B20 9

10 KM3NeT costs $ KM3NeT string ~ ¼ of $ Antares string

1 st prototype April 11

Multiplicity Rate [Hz] PMT orientation [deg.] atmospheric muons K40 random coincidences + data photon counting directionality 1 st prototype ¶ atmospheric muons + data (M ≥ 7) shadowing Rate [a.u.] ¶ 12

2 nd prototype 13

2 nd prototype Rate [Hz] Multiplicity May 2014, KM3NeT-It online monitoring Atmospheric muons 14 number of events  t [  s] Time difference between optical modules Atmospheric muons

Phase Total costs ¶ [M€] Primary deliverableStatus 131 Proof of feasibility of network of distributed neutrino telescope Funded 1.580–90 Measurement of neutrino signal reported by IceCube Letter of Intent 2220–250Neutrino astronomyESFRI road map Phased implementation 15 ¶ Total costs ≡ Total cumulative costs.

KM3NeT phase-1.5 Measurement of neutrino signal reported by IceCube 16

Cascade analysis 1.0  cut & count 1.Online data filter – 5 (or more) coincidences between PMTs in same optical module (  T = 10 ns) 2.Event filter – number of hits ≥ Vertex cut – veto atmospheric muons 4.Energy cut – total time-over-threshold ≥ 15  s 5.MRF/MDP cut – 2D cut based on Boosted Decision Tree & energy estimate 17

3.) Atmospheric muon veto cosmic neutrinosatmospheric muons 18 R 2 [10 3 m 2 ] z [m] vertex cut detector volume

5.) Signal / Noise 19 BDT (topology of event)  events / 6 months atmospheric muons atmospheric neutrinos (tracks) atmospheric neutrinos (showers) cosmic neutrinos (tracks) cosmic neutrinos (showers)

Sensitivity ¶ 20 ¶ Standard footprint; 30% better FOM with 30% larger inter-string distance. years significance [  ] cascades

KM3NeT phase-2 Neutrino astronomy 21

Galactic sources 22 RXJ1713 ¶ Vela X § years significance [  ] RXJ Vela X ¶ S.R. Kelner, et al., Phys. Rev. D 74 (2006) § F.L. Villante and F. Vissani, Phys. Rev. D 78 (2008) (binned analysis)

Addendum 23 ORCA is a feasibility study for a measurement of the mass hierarchy of neutrinos with the KM3NeT research infrastructure ¶ – ORCA (and other detectors) can use same technology but with different topologies of the photo-sensor grid – ORCA (and other detectors) can be embedded in the KM3NeT research infrastructure at (relatively) low cost ¶ Poster by Antoine Kouchner at this conference.

KM3NeT outlook Neutrino physicsNeutrino astronomy m ORCA +40 M€ Phase  170 M€ Phase  60 M€ years significance [  ] years Vela X RXJ1713 years muon tracks cascades combined cascades tracks