Нанокристаллические магнитомягкие сплавы Fe-Si-B-Nb-Cu Ю.П. Черненков Fe (87-x) Si x Nb 3 B 9 Cu 1 N.V. Ershov, Yu.P. Chernenkov, V.I. Fedorov, V.A. Lukshina,

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

Surface science: physical chemistry of surfaces Massimiliano Bestetti Lesson N° November 2011.
-CoFe 2 O 4 nanocomposite films Magnetic Properties of BaTiO 3 -CoFe 2 O 4 nanocomposite films :::: Grupo FCD :::: Centro de Física da Universidade do.
CHAPTER 2: PLASTICITY.
Fundamental Concepts Crystalline: Repeating/periodic array of atoms; each atom bonds to nearest neighbor atoms. Crystalline structure: Results in a lattice.
MatSE 259 Exam 1 Review Session 1.Exam structure – 25 questions, 1 mark each 2.Do NOT forget to write your student I.D. on the answer sheet 3.Exams are.
Deformation & Strengthening Mechanisms of Materials
How do atoms ARRANGE themselves to form solids? Unit cells
When dealing with crsytalline materials, it is often necessary to specify a particular point within a unit cell, a particular direction or a particular.
Solid Crystallography
Crystal Structural Behavior of CoCu₂O₃ at High Temperatures April Jeffries*, Ravhi Kumar, and Andrew Cornelius *Department of Physics, State University.
Introduction To Materials Science, Chapter 4, Imperfections in solids University of Virginia, Dept. of Materials Science and Engineering 1 “Crystals are.
Design of an Aerospace Component
Combustion Driven Compaction of Nanostructured SmCo/Fe Exchange spring magnetic materials can potentially increase the energy-products of permanent magnets.
MSE-630 Magnetism MSE 630 Fall, 2008.
Dislocations and Strengthening
1 M.Rotter „Magnetostriction“ Course Lorena 2007 New Topics Fe-Ga Magnetic Shape Memory Effect Gd Compounds, Gd-Si RE Metals Sm, Tm MEP.
Ge 116 Module 1: Scanning Electron Microscopy
Materials Engineering – Day 6
Exercise: Indexing of the electron diffraction patterns
LECTURER6 Factors Affecting Mechanical Properties
Magnetic Properties of Materials
Howard H. Liebermann, Ph.D..  Structure of Metals  On atomic level, regular arrangement of atoms immersed in “sea” of “free electrons”.  Results of.
1 5. Strain and Pressure Sensors Piezoresistivity Applied stress gives the change in resistance  = F/A  =  x/x  R/R (stress) (strain) In the case of.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Abnormal thermal expansion in NaZn 13 -type La(Fe 1-x Co x ) 11.4 Al 1.6 compounds Results Yuqiang Zhao 1,2, Rongjin Huang 1,*, Shaopeng Li 1,2, Wei Wang.
Miller Indices And X-ray diffraction
Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Determination of the residual stress tensor in textured zirconium alloy by neutron.
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Permanent Magnets based on Fe-Pt Alloys P.D. Thang, E. Brück, K.H.J. Buschow, F.R. de Boer Financial support by STW.
Interfaces in Solids. Coherent without strain Schematics of strain free coherent interfaces Same crystal structure (& lattice spacing) but different composition.
To study the mechanical properties of NANOPERM and FINEMET alloys.
가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team PAL/POSTECH 1. ILC-Korea and International.
The Structures of Metals
Nanoclusters in model ferroelastics Hg 2 Hal 2 E.M.Roginskii A.F.Ioffe Physical-Technical Institute, Russia.
The ratio of stress and strain, called modulus of elasticity. Mechanical Properties of Solids Modulus of Elasticity.
Anandh Subramaniam & Kantesh Balani
Thermodynamics and Kinetics of Phase Transformations in Complex Non-Equilibrium Systems Origin of 3D Chessboard Structures: Theory and Modeling Armen G.
M. Kopcewicz and T. Kulik a ) Institute of Electronic Materials Technology, Warszawa, Wólczyńska Street 133, Poland, a ) Faculty of Materials Science.
Types of Materials Metals : –Strong, ductile –high thermal & electrical conductivity –opaque Polymers/plastics : Covalent bonding  sharing of e’s –Soft,
MATERIALS SCIENCE Week 2 STRUCTURE OF MATERIALS. Why Study Crystal Structure of Materials? The properties of some materials are directly related to their.
03/04/2000LHC Vacuum Design Meeting Karine COUTURIER/EST-SM C17110 and C17410 coppers  Chemical composition (wt%) : copper = alloy balance Be Ni Co Fe.
ENGR-45_Lec-04_Crystallography.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical.
Introduction. Like a house consisting of rooms separated by walls, a crystalline material consists of grains separated by grain boundaries. Within a grain,
Linear and Planar Atomic Densities
Miller Indices & Steriographic Projection
Amorphous Nanocomposite Materials Presented by: Renée E. Gordon Advisor: Professor Michael McHenry Graduate Student: Changyong Um.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
The Muppet’s Guide to: The Structure and Dynamics of Solids Single Crystal Diffraction.
Properties of engineering materials
ENGR-45_Lec-18_DisLoc-Strength-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
ME 330 Engineering Materials
Effects of Arrays arrangements in nano-patterned thin film media
Materials Science Chapter 4 Disorder in solid Phases.
Introduction Electrical Steels (Soft Magnetic Materials) Core Losses : The energy that is dissipated in the form of heat within.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
Materials Science Chapter 8 Deformation and Fracture.
Materials Science Metals and alloys.
3. Crystal interfaces and microstructure
Chapter 3: Contributions to Strength
Dynamic Property Models
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
5. Strain and Pressure Sensors
Foundations of Magnetism
Foundations of Magnetism
Dislocations and Strengthening
© 2011 Cengage Learning Engineering. All Rights Reserved.
Applications 14.
Mechanical Properties Of Metals - I
Fig. 3 Characterization of the current-induced effective fields.
Presentation transcript:

Нанокристаллические магнитомягкие сплавы Fe-Si-B-Nb-Cu Ю.П. Черненков Fe (87-x) Si x Nb 3 B 9 Cu 1 N.V. Ershov, Yu.P. Chernenkov, V.I. Fedorov, V.A. Lukshina, A.P. Potapov. Thermal stability of strains induced in Fe 81 Si 6 Nb 3 B 9 Cu 1 alloy nanocrystals during annealing under tensile loading. Physics of the Solid State, Volume 57, Issue 1, pp 5-13 (2015) N.V. Ershov, Yu.P. Chernenkov, V.I. Fedorov, V.A. Lukshina, A.P. Potapov. Effect of annealing under tensile loading on the structure of nanocrystals in the Finemet alloy. Physics of the Solid State, Volume 56, Issue 11, pp (2014) N.V. Ershov, V.A. Lukshina, V.I. Fedorov, N.V. Dmitrieva, Yu.P. Chernenkov, A.P. Potapov. Effect of thermomagnetic and thermomechanical treatments on the magnetic properties and structure of the nanocrystalline soft magnetic alloy Fe 81 Si 6 Nb 3 B 9 Cu 1 Physics of the Solid State, Volume 55, Issue 3, pp (2013) N.V. Ershov, N.V. Dmitrieva, Yu.P. Chernenkov, V.A. Lukshina, V.I. Fedorov, A.P. Potapov. Relaxation of the state with induced transverse magnetic anisotropy in the soft magnetic nanocrystalline alloy Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 Physics of the Solid State, Volume 54, Issue 9, pp (2012) Nikolay V. Ershov, Yuri P. Chernenkov, Vladimir I. Fedorov, Vera A. Lukshina, Nadezda M. Kleinerman, Vadim V. Serikov, Anatoly P. Potapov and Nikita K. Yurchenko. Structure of Nanocrystals in Finemets with Different Silicon Content and Stress- Induced Magnetic Anisotropy. Nanocrystal, Yoshitake Masuda (Ed.), ISBN: , InTech, p (2011). Available from: Yu.P. Chernenkov, N.V. Ershov, V.I. Fedorov, V.A. Lukshina, A.P. Potapov X-ray diffraction studies of the structure of nanocrystals in alloy Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 soft magnetic alloys before and after thermomechanical treatment. Physics of the Solid State, Volume 52, Issue 3, pp (2010)

Trade name "FINEMET®" known as a pioneer material in nanocrystalline soft magnetic materials (Yoshizawa et aI., 1988)

1 oE = 80 A/m  1 A/m = oE Schematic plot of coercive field Hc vs. crystal anisotropy K1 for prominent soft, hard, and extremely hard magnetic materials. Typical initial permeabilities and saturation magnetization for near-zero magnetostrictive, soft magnetic materials with flat- type hysteresis loop. Nanocrystalline materials have a limited long-range order (which is the same as the short-range order) with a structural correlation length (the grain size) on the nanometer scale, typically 5–20 nm. The optimum alloy composition originally proposed (Yoshizawa et al. 1988) and subsequently not much changed is Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 (at.%)

Дифрактограммы сплавов Fe73.5 Si13.5B9Nb3Cu1 (снизу вверх): в исходном состоянии, после нанокристаллизующего отжига и после ТМехО (измеренные при сканировании: светлые кружки — вдоль, темные — пеперек ленты). Вертикальными штриховыми линиями показаны положения пиков для ОЦК-структуры, треугольниками — положения сверхструктурных пиков фазы Fe3Si. Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 Journal of Non-Crystalline Solids 354, 4871 (2008)

Дифрактограммы образца сплава, подвергнутого ТМехО. На вставках в увеличенном виде показаны профили отдельных пиков при продольном (светлые кружки) и поперечном (темные кружки) сканировании. Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 The relative volume fraction of the ordered phase Fe3Si in the nanocrystalline Fe 87-X Si X B9Nb3Cu1 alloy depending on the average silicon concentration - X.

Профиль пика (200) при сканировании вдоль (светлые кружки) и поперек (темные кружки) ленты образца сплава, подвергнутого ТМехО (a), с аналогичными профилями от образца, прошедшего нанокристаллизующий отжиг (b). Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 Зависимость изменений величины межплоскостных расстояний d в продольном и поперечном сканах от угла φ между направлением вектора [hkl] и ближайш ей осью и ее аппроксимация квадратичной функцией (сплошная линия). Ориентации осей нанокристаллов, вносящих вклад в рефлекс (hkl) дифрактограммы, полученной при θ−2θ-сканировании вдоль вектора рассеяния q (a), и частные случаи для рефлексов (200) (b) и (222) (c).

Relative changes in the interplanar spacing Δd/d: longitudinal strains (○), and transverse reductions () in the alloys with different silicon content X depending on the angle Φ between the direction [hkl] and the closest axis. Lines show the variants of fitting by linear or quadratic functions of the angle. Fe (87-x) Si x Nb 3 B 9 Cu 1 Mössbauer spectra of the alloys with different values of X after NCA at 520°C for 120 minutes and TSA at 520°C for 120 minutes under a tensile stress of 440 MPa.

Hysteresis loops measured for nanocrystalline Fe 87-X Si X B9Nb3Cu1 alloy after the nanocrystallization annealing (NCA) and tensile stress annealing (TSA). Fe (87-x) Si x Nb 3 B 9 Cu 1 Корреляция относительных изменений межплоскостных расстояний (hkl) и остаточной величины константы индуцированной магнитной анизотропии R. Остаточные растяжения и сжатия отмечены светлыми и темными точками соответственно. Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1

Fe (87-x) Si x Nb 3 B 9 Cu 1 Magnetostriction constants as functions of Si concentrations, determined by straingauge measurements on single crystals (room temperature). a - scheme of the distortions of the nanocrystal lattice (dashed lines) for different directions of tensile load application parallel to the radius vectors [111], [010] and [110]. b – the corresponding variants of orientations of the crystallographic axes (straight lines with arrows) and magnetization (dashed lines with arrows) in the nanocrystals with the transverse Villari effect

Fe 73.5 Si 13.5 Nb 3 B 9 Cu 1 В спин-волновом приближении при квадратичном законе дисперсии энергия спиновых волн равна  = Dq 2, где D – спин-волновая жесткость, q =2  / – переданный волновой вектор (  << 1 - угол рассеяния, - длина волны нейтронов, q = k - k', где k, k' - соответственно волновые векторы падающих и рассеянных нейтронов). Угловой диапазон, в котором должно наблюдаться рассеяние нейтронов с поглощением или возбуждением спиновой волны, не превышает угла отсечки  0 :  0 = E/Dk 2 << 1, где E – энергия нейтронов. Константа спин-волновой жесткости как D  500 мэВÅ 2, исходя из оценки угла отсечки  0 ≤ рад.