Formal definition of a key A key is a set of attributes A 1,..., A n such that for any other attribute B: A 1,..., A n  B A minimal key is a set of attributes.

Slides:



Advertisements
Similar presentations
Lecture 6: Design Constraints and Functional Dependencies January 21st, 2004.
Advertisements

Murali Mani Normalization. Murali Mani What and Why Normalization? To remove potential redundancy in design Redundancy causes several anomalies: insert,
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 227 Database Systems I Design Theory for Relational Databases.
1 Lecture 02: Conceptual Design Wednesday, October 6, 2010 Dan Suciu -- CSEP544 Fall 2010.
Lossless Decomposition Prof. Sin-Min Lee Department of Computer Science San Jose State University.
1 Lecture 10: Database Design XML Wednesday, October 20, 2004.
Functional Dependencies Definition: If two tuples agree on the attributes A, A, … A 12n then they must also agree on the attributes B, B, … B 12m Formally:
CMSC424: Database Design Instructor: Amol Deshpande
1 Introduction to Database Systems CSE 444 Lectures 8 & 9 Database Design April 16 & 18, 2008.
Lecture #3 Functional Dependencies Normalization Relational Algebra Thursday, October 12, 2000.
1 CMSC424, Spring 2005 CMSC424: Database Design Lecture 9.
Lossless Decomposition Prof. Sin-Min Lee Department of Computer Science San Jose State University.
1 Lecture 06 The Relational Data Model. 2 Outline Relational Data Model Functional Dependencies FDs in ER Logical Schema Design Reading Chapter 8.
M.P. Johnson, DBMS, Stern/NYU, Spring C : Database Management Systems Lecture #7 Matthew P. Johnson Stern School of Business, NYU Spring,
Boyce-Codd NF & Lossless Decomposition Professor Sin-Min Lee.
M.P. Johnson, DBMS, Stern/NYU, Sp20041 C : Database Management Systems Lecture #6 Matthew P. Johnson Stern School of Business, NYU Spring, 2004.
Fall 2001Arthur Keller – CS 1804–1 Schedule Today Oct. 4 (TH) Functional Dependencies and Normalization. u Read Sections Project Part 1 due. Oct.
Relation Decomposition A, A, … A 12n Given a relation R with attributes Create two relations R1 and R2 with attributes B, B, … B 12m C, C, … C 12l Such.
Functional Dependencies and Relational Schema Design.
©Silberschatz, Korth and Sudarshan7.1Database System Concepts Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design.
1 Design Theory for Relational Databases Functional Dependencies Decompositions Normal Forms.
Chapter 10 Functional Dependencies and Normalization for Relational Databases.
Database Systems Normal Forms. Decomposition Suppose we have a relation R[U] with a schema U={A 1,…,A n } – A decomposition of U is a set of schemas.
E/R Diagrams and Functional Dependencies. Modeling Subclasses The world is inherently hierarchical. Some entities are special cases of others We need.
Lecture 08: E/R Diagrams and Functional Dependencies.
1 Schema Design & Refinement (aka Normalization).
CS143 Review: Normalization Theory Q: Is it a good table design? We can start with an ER diagram or with a large relation that contain a sample of the.
Lecture 09: Functional Dependencies. Outline Functional dependencies (3.4) Rules about FDs (3.5) Design of a Relational schema (3.6)
THIRD NORMAL FORM (3NF) A relation R is in BCNF if whenever a FD XA holds in R, one of the following statements is true: XA is a trivial FD, or X is.
Functional Dependencies. FarkasCSCE 5202 Reading and Exercises Database Systems- The Complete Book: Chapter 3.1, 3.2, 3.3., 3.4 Following lecture slides.
IST 210 Normalization 2 Todd Bacastow IST 210. Normalization Methods Inspection Closure Functional dependencies are key.
Functional Dependencies. Outline Functional dependencies (3.4) Rules about FDs (3.5) Design of a Relational schema (3.6)
1 Lecture 7: Normal Forms, Relational Algebra Monday, 10/15/2001.
Tallahassee, Florida, 2015 COP4710 Database Systems Relational Design Fall 2015.
1 Lecture 10: Database Design Wednesday, January 26, 2005.
Functional Dependencies and Relational Schema Design.
Lecture 3: Conceptual Database Design and Schema Design April 12 th, 2004.
Lecture 13: Relational Decomposition and Relational Algebra February 5 th, 2003.
1 Lecture 10: Database Design and Relational Algebra Monday, October 20, 2003.
Functional Dependencies CIS 4301 Lecture Notes Lecture 8 - 2/7/2006.
Rensselaer Polytechnic Institute CSCI-4380 – Database Systems David Goldschmidt, Ph.D.
1 Lecture 08: E/R Diagrams and Functional Dependencies Friday, January 21, 2005.
CS542 1 Schema Refinement Chapter 19 (part 1) Functional Dependencies.
CS411 Database Systems Kazuhiro Minami 04: Relational Schema Design.
COMP 430 Intro. to Database Systems Normal Forms Slides use ideas from Chris Ré.
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke1 Schema Refinement and Normal Forms Chapter 19.
© D. Wong Functional Dependencies (FD)  Given: relation schema R(A1, …, An), and X and Y be subsets of (A1, … An). FD : X  Y means X functionally.
Chapter 8 Relational Database Design. 2 Relational Database Design: Goals n Reduce data redundancy (undesirable replication of data values) n Minimize.
1 Lecture 9: Database Design Wednesday, January 25, 2006.
CSC 411/511: DBMS Design Dr. Nan Wang 1 Schema Refinement and Normal Forms Chapter 19.
Lecture 11: Functional Dependencies
CS422 Principles of Database Systems Normalization
3.1 Functional Dependencies
Problems in Designing Schema
Lecture 6: Design Theory
Normalization Murali Mani.
Lecture 2: Database Modeling (end) The Relational Data Model
Cse 344 May 16th – Normalization.
Functional Dependencies and Relational Schema Design
Introduction to Database Systems CSE 444 Lectures 8 & 9 Database Design October 12 & 15, 2007.
Lecture 09: Functional Dependencies, Database Design
Lecture 8: Database Design
Lecture 07: E/R Diagrams and Functional Dependencies
CSE544 Data Modeling, Conceptual Design
Functional Dependencies
Lecture 08: E/R Diagrams and Functional Dependencies
Lecture 6: Functional Dependencies
Lecture 11: Functional Dependencies
Lecture 09: Functional Dependencies
Presentation transcript:

Formal definition of a key A key is a set of attributes A 1,..., A n such that for any other attribute B: A 1,..., A n  B A minimal key is a set of attributes which is a key and for which no subset is a key Note: class notes call them candidate key and superkey

Examples of Keys Product(name, price, category, color) name, category  price category  color Keys are: {name, category} and all supersets Enrollment(student, address, course, room, time) student  address room, time  course student, course  room, time Keys are: [????]

Finding the Keys of a Relation Rule 1: If the relation comes from an entity set, the key of the relation is the key of the entity set. Given a relation constructed from an E/R diagram, what is its key? address namessn Person Person(ssn, name, address)

Finding the Keys (contd.) Person buys Product name pricenamessn buys(name, ssn, date) date Rule 2: If the relation comes from a many-many relationship, the key of the relation is the set of all attribute keys in the relations corresponding to the entity sets

Finding the Keys (contd.) Exception: if there is an arrow from the relationship to E, Then we don’t need the key of E as part of the relation key. Purchase Product Person Store CreditCard name card-no ssn sname Purchase(name, sname, ssn, card-no)

Expressing Dependencies Say: “the CreditCard determines the Person” Purchase Product Person Store CreditCard name card-no ssn sname Purchase(name, sname, ssn, card-no) card-no  ssn

Example 1 Consider the following relation and dependency: R (A, B, C, D, E), A  B, A  C, BC  A, D  E Identify whether R is in BCNF or 3NF or neither. If R is not in BCNF, decompose it into a collection of BCNF relations

Answer 1 The key is: AD or BCD It is neither in BCNF nor in 3NF –It can be decomposed into: BCA, BCD, DE –Or: ABC, AD, DE

Example 2 For the following schema and set of FDs R(A,B,C,D) with FDs BC  D, C  A, AB  C i.What are the keys of the relation? ii.What are the BCNF violations, if any? (List only FDs with one attribute on the right side.) iii.Decompose the relation, as necessary, into collections of BCNF relations.

Answer 2 Keys: AB, BC Violations: C  A, CD  A Decomposition: (B,C,D) and (C,A)

Inference Rules for FD’s A, A, … A 12n B, B, … B 12m A, A, … A 12n 1 Is equivalent to B A, A, … A 12n 2 B 12n m B … Splitting rule and Combing rule Trivial Rule A, A, … A 12n i A where i = 1, 2,..., n

Inference Rules for FD’s (contd.) A, A, … A 12n Transitive Closure Rule B, B, … B 12m A, A, … A 12n 1 B, B …, B 2m1 C, C …, C 2p1 2p If and then

Example Enrollment(student, major, course, room, time) student  major major, course  room course  time What else can we infer ? […]

Closure of a set of Attributes Given a set of attributes {A1, …, An} and a set of dependencies S. Problem: find all attributes B such that: any relation which satisfies S also satisfies: A1, …, An B The closure of {A1, …, An}, denoted {A1, …, An}, is the set of all such attributes B +

Closure Algorithm Start with X={A1, …, An}. Repeat until X doesn’t change do: if is in S, and C is not in X then add C to X. B, B, … B 12n C 12 n are all in X, and

Example A B C A D E B D A F B Closure of {A,B}: X = {A, B, } Closure of {A, F}: X = {A, F, } R(A,B,C,D,E,F)

Why Is the Algorithm Correct ? Show the following by induction: –For every B in X: A1, …, An B Initially X = {A1, …, An} -- holds Induction step: B1, …, Bm in X –Implies A1, …, An B1, …, Bm –We also have B1, …, Bm C –By transitivity we have A1, …, An C This shows that the algorithm is sound; need to show it is complete

Relational Schema Design (or Logical Design) Main idea: Start with some relational schema Find out its FD’s Use them to design a better relational schema

Relational Schema Design Anomalies: Redundancy = repeat data Update anomalies = Fred moves to “Bellvue” Deletion anomalies = Fred drops all phone numbers: what is his city ? Recall set attributes (persons with several phones): SSN  Name, City, but not SSN  PhoneNumber NameSSNPhoneNumberCity Fred Seattle Fred Seattle Joe Westfield Joe Westfield

Relation Decomposition Break the relation into two: NameSSNCity Fred Seattle Joe Westfield SSNPhoneNumber

Relational Schema Design Person buys Product name pricenamessn Conceptual Model: Relational Model: plus FD’s Normalization: Eliminates anomalies

Decompositions in General R(A 1,..., A n ) Create two relations R1(B1,..., Bm) and R2(C1,..., Cp) such that: B1,..., Bm  C1,..., Cp = A1,..., An and: R 1 = projection of R on B 1,..., B m R 2 = projection of R on C 1,..., C p

Incorrect Decomposition Sometimes it is incorrect: NamePriceCategory Gizmo19.99Gadget OneClick24.99Camera DoubleClick29.99Camera Decompose on : Name, Category and Price, Category

Incorrect Decomposition NameCategory GizmoGadget OneClickCamera DoubleClickCamera PriceCategory 19.99Gadget 24.99Camera 29.99Camera NamePriceCategory Gizmo19.99Gadget OneClick24.99Camera OneClick29.99Camera DoubleClick24.99Camera DoubleClick29.99Camera When we put it back: Cannot recover information

Normal Forms First Normal Form = all attributes are atomic Second Normal Form (2NF) = old and obsolete Third Normal Form (3NF) = this lecture Boyce Codd Normal Form (BCNF) = this lecture Others...

Boyce-Codd Normal Form A simple condition for removing anomalies from relations: In English (though a bit vague): Whenever a set of attributes of R is determining another attribute, should determine all the attributes of R. A relation R is in BCNF if: Whenever there is a nontrivial dependency A 1,..., A n  B in R, {A 1,..., A n } is a key for R A relation R is in BCNF if: Whenever there is a nontrivial dependency A 1,..., A n  B in R, {A 1,..., A n } is a key for R

Example What are the dependencies? SSN  Name, City What are the keys? {SSN, PhoneNumber} Is it in BCNF? NameSSNPhoneNumberCity Fred Seattle Fred Seattle Joe Westfield Joe Westfield

Decompose it into BCNF NameSSNCity Fred Seattle Joe Westfield SSNPhoneNumber SSN  Name, City

Summary of BCNF Decomposition Find a dependency that violates the BCNF condition: A, A, … A 12n B, B, … B 12m A’s Others B’s R1R2 Heuristics: choose B, B, … B “as large as possible” 12m Decompose: Is there a 2-attribute relation that is not in BCNF ? Continue until there are no BCNF violations left.

Example Decomposition Person(name, SSN, age, hairColor, phoneNumber) SSN  name, age age  hairColor Decompose in BCNF (in class): Step 1: find all keys Step 2: now decompose

Other Example R(A,B,C,D) A B, B C Key: A, D Violations of BCNF: A B, A C, A BC Pick A BC: split into R1(A,BC) R2(A,D) What happens if we pick A B first ?

Correct Decompositions A decomposition is lossless if we can recover: R(A,B,C) R1(A,B) R2(A,C) R’(A,B,C) should be the same as R(A,B,C) R’ is in general larger than R. Must ensure R’ = R Decompose Recover

Correct Decompositions Given R(A,B,C) s.t. A  B, the decomposition into R1(A,B), R2(A,C) is lossless

3NF: A Problem with BCNF Unit Company Product Unit Company Unit Product FD’s: Unit  Company; Company, Product  Unit So, there is a BCNF violation, and we decompose. Unit  Company No FDs

So What’s the Problem? Unit Company Product Unit CompanyUnit Product Galaga99 UW Galaga99 databases Bingo UW Bingo databases No problem so far. All local FD’s are satisfied. Let’s put all the data back into a single table again: Galaga99 UW databases Bingo UW databases Violates the dependency: company, product -> unit!

Solution: 3rd Normal Form (3NF) A simple condition for removing anomalies from relations: A relation R is in 3rd normal form if : Whenever there is a nontrivial dependency A 1, A 2,..., A n  B for R, then {A 1, A 2,..., A n } a super-key for R, or B is part of a key. A relation R is in 3rd normal form if : Whenever there is a nontrivial dependency A 1, A 2,..., A n  B for R, then {A 1, A 2,..., A n } a super-key for R, or B is part of a key.

Example 3 Decompose into BCNF relation R(A,B,C,D,E) with functional dependencies A  B, B  C, C  D