Time Dependence of Loss-Cone Amplitude measured with the Tibet Air-Shower Array Saito Toshiharu on behalf of the Tibet AS  experiment.

Slides:



Advertisements
Similar presentations
Cygnus Paper Analysis & A 4 Properties Aous Abdo Michigan State University Milagro Collaboration Meeting LANL. December 18-19, 2006.
Advertisements

AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Anisotropy in Cosmic Ray Arrival Directions Using IceCube and IceTop Frank McNally ISCRA.
Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.
JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
1 Tibet Air Shower Array plus Muon Detector Array for the 100 TeV Gamma-Ray Wide Sky Survey K. Kawata For the Tibet AS  Collaboration ICRR, University.
冯朝阳 中科院高能所 On behalf of the Chinese Collaboration of Tibet ASγ Experiment ITP winter workshop on dark matter 2010/12/13-16 TIBET-III + MD 在 10TEV 能区间接探测.
1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.
Primary Cosmic-Ray Energy Spectrum Around The Knee Energy Region Measured By The Tibet Hybrid Experiment Physics at the End of the Galactic Cosmic Ray.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
Interpretation of the Cosmic-ray Energy Spectrum and the Knee Inferred from the Tibet Air-Shower Experiment M.Shibata* and Tibet ASg Collaboration *Yokohama.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
North-south anisotropy of galactic cosmic rays observed with the Global Muon Detector Network 34 th ICRC (August 4, 2015, Den Hague) SH07 ID117 K. Munakata.
Anisotropy Studies in the Pierre Auger Observatory Beatriz Blanco Siffert for the Auger Collaboration Instituto de Física - Universidade Federal do Rio.
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Study of the large Tyvek bag technique for the water Cherenkov detector in TIBET AS+MD ——status report LIU Cheng Institute of High Energy Physics, CAS,
1 Multi-TeV Observation on the Galactic Cosmic Ray Anisotropy in the Tail-In and Cygnus Regions by the Tibet-III Air Shower Array C. T. Yan 08 / 12 / 2006.
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
Anisotropy of primary cosmic ray flux in Super-Kamiokande Yuichi Oyama (KEK) La Thuile 2006 for the Super-Kamiokande collaboration New astronomy.
1 Atmospheric variations as observed by the BUST Barometric effect M.Berkova, V.Yanke, L.Dorman, V.Petkov, M.Kostyuk, R.Novoseltseva, Yu.Novoseltsev, P.
Yakutsk results: spectrum and anisotropy M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin.
TeV gamma-ray observation of RCW86 with the CANGAROO-II telescope WATANABE Shio (Kyoto university) for the CANGAROO Collaboration Contents The CANGAROO.
Anisotropy of primary cosmic ray flux in Super-Kamiokande Yuichi Oyama (KEK) Vietnam2006 New astronomy using underground cosmic-ray muons.
(Tibet AS collaboration)
Electron Observation : Past, Present and Future S.Torii : Waseda University (Japan) Rome PAMELA Workshop
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
AGASA Results Masahiro Teshima for AGASA collaboration
Injections of e ± from Nearby Pulsars and their GeV/TeV Spectral Features Injections of e ± from Nearby Pulsars and their GeV/TeV Spectral Features (NK,
1 Observation of TeV Gamma Rays with the Tibet Air Shower Array and Future Prospects ICRR, University of Tokyo Kazumasa Kawata For the Tibet AS  Collaboration.
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
Northern sky Galactic Cosmic Ray anisotropy between TeV with the Tibet Air Shower Array Zhaoyang Feng Institute of High Energy Physics, CAS, China.
The primary energy spectrum measured by using the time structure of extensive air showers with compact EAS arrays (ID441) H. Matsumoto 1, A. Iyono 1, I.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
Performances of the KM2A prototype array J.Liu for the LHAASO Collaboration Institute of High Energy Physics, CAS 32nd International Cosmic Ray Conference,
A Northern Sky Survey for Both TeV CR anisotropy and  -ray Sources with Tibet Air Shower Array Hongbo Hu For Tibet AS  collaboration.
Study on the Possible Contribution of Galactic Cosmic Rays to the Galactic Halo Magnetic Field Xiaobo Qu, Yi Zhang, Liang Xue* Cheng Liu, Hongbo Hu Institute.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
Correlation Between Solar Activity and the Sun’s Shadow Observed by the Tibet Air Shower Array Kazumasa Kawata ICRR, University of Tokyo, Japan For the.
Shoushan Zhang, ARGO-YBJ Collaboration and LHAASO Collaboration 4 th Workshop on Air Shower Detection at High Altitude Napoli 31/01-01/ IHEP (Institute.
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Personal Details Name: Yi Zhang Mailing Address: P.O.Box 918-3, 19B Yuquan Lu, Shijingshan District, Beijing, China,
E. W. Grashorn, for the MINOS Collaboration Observation of Shadowing in the Underground Muon Flux in MINOS This poster was supported directly by the U.S.
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
Downgoing Muons in the IceCube experiment: Final presentation for Phys 735, Particle, Prof. Sridhara Dasu L.Gladstone 2008 Dec 3.
On temporal variations of the
Update on the analysis of muon angular distributions in equatorial coordinates F.Riggi Dept. of Physics and INFN, Catania.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
The “Carpet-2” multipurpose air shower array of the Baksan Neutrino Observatory INR of RAS A.U. Kudzhaev Institute for Nuclear Research, Russian Academy.
On behalf of the ARGO-YBJ collaboration
Muons in IceCube PRELIMINARY
L.L.Ma for LHAASO collaboration Beijing China
Expectation of Cosmic Ray Energy Spectrum with LHAASO
Anisotropy of primary cosmic ray flux in Super-Kamiokande
Long-term variations of vector and tensor anisotropies of cosmic rays
Institute of High Energy Physics, CAS
0755 Azimuthal modulation of cosmic ray flux
Litao Zhao Liaoning University&IHEP
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
Anisotropy of Primary Cosmic Rays
Alexander Kappes Francis Halzen Aongus O’Murchadha
32nd International Cosmic Ray Conference, Beijing
South West Jiaotong University, Sichuan Province,China
Estimation of Sensitivity to Gamma Ray point Sources above 30TeV
Indirect dark matter search with YBJ-AS Observatory
The Aperture and Precision of the Auger Observatory
TeV γ-ray survey of the northern sky using the ARGO-YBJ experiment
Examine solar cycle variations (11/22 yrs.) of DA in SO & SI times.
Study on Large-Scale CR Anisotropy with ARGO-YBJ experiment
Presentation transcript:

Time Dependence of Loss-Cone Amplitude measured with the Tibet Air-Shower Array Saito Toshiharu on behalf of the Tibet AS  experiment

The Tibet AS  Collaboration M.Amenomori(1), X.J.Bi(2), D.Chen(3), W.Y.Chen(2), S.W.Cui(4), Danzengluobu(5), L.K.Ding(2), X.H.Ding(5), C.F.Feng(6), Zhaoyang Feng(2), Z.Y.Feng(7), Q.B.Gou(2), H.W.Guo(5), Y.Q.Guo(2), H.H.He(2), Z.T.He(4,2), K.Hibino(8), N.Hotta(9), Haibing Hu(5), H.B.Hu(2), J.Huang(2), W.J.Li(2,7), H.Y.Jia(7), L.Jiang(2), F.Kajino(10), K.Kasahara(11), Y.Katayose(12), C.Kato(13), K.Kawata(3), Labaciren(5), G.M.Le(2), A.F.Li(14,6,2), C.Liu(2), J.S.Liu(2), H.Lu(2), X.R.Meng(5), K.Mizutani(11,15), K.Munakata(13), H.Nanjo(1), M.Nishizawa(16), M.Ohnishi(3), I.Ohta(17), S.Ozawa(11), X.L.Qian(6,2), X.B.Qu(2), T.Saito(18), T.Y.Saito(19), M.Sakata(10),.K.Sako(12), J.Shao(2,6), M.Shibata(12), A.Shiomi(20), T.Shirai(8), H.Sugimoto(21), M.Takita(3), Y.H.Tan(2), N.Tateyama(8), S.Torii(11), H.Tsuchiya(22), S.Udo(8), H.Wang(2), H.R.Wu(2), L.Xue(6), Y.Yamamoto(10), Z.Yang(2), S.Yasue(23), A.F.Yuan(5), T.Yuda(3), L.M.Zhai(2), H.M.Zhang(2), J.L.Zhang(2), X.Y.Zhang(6), Y.Zhang(2), Yi Zhang(2), Ying Zhang(2), Zhaxisangzhu(5), X.X.Zhou(7) (1)Department of Physics, Hirosaki University, Japan (2)Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, China (3)Institute for Cosmic Ray Research, University of Tokyo, Japan (4)Department of Physics, Hebei Normal University, China (5)Department of Mathematics and Physics, Tibet University, China (6)Department of Physics, Shandong University, China (7)Institute of Modern Physics, SouthWest Jiaotong University, China (8)Faculty of Engineering, Kanagawa University, Japan (9)Faculty of Education, Utsunomiya University, Japan (10)Department of Physics, Konan University, Japan (11)Research Institute for Science and Engineering, Waseda University, Japan (12)Faculty of Engineering, Yokohama National University, Japan (13)Department of Physics, Shinshu University, Japan (14)School of Information Science and Engineering, Shandong Agriculture University, China (15)Saitama University, Japan (16)National Institute of Informatics, Japan (17)Sakushin Gakuin University, Japan (18)Tokyo Metropolitan College of Industrial Technology, Japan (19)Max-Planck-Institut f\"ur Physik, Deutschland (20)College of Industrial Technology, Nihon University, Japan (21)Shonan Institute of Technology, Japan (22)RIKEN, Japan (23)School of General Education, Shinshu University, Japan

Tibet AS  Experiment At Yangbajing in Tibet, China (  E,  N, 4,300 m a.s.l.) Scintillation Counter Array : 0.5 m 2 x 789 counters Effective area :  37,000 m 2 Energy region :  TeV PeV F.O.V. :  2 sr Relative timing information Arrival direction Angular Resolution  0.4 Charge information (  sum of the number of particles/m 2 for each counter ) Primary cosmic-ray energy Energy Resolution 

0350 Amenomori et al, Science, 314, 439 (2006) Cygnus region (Extended TeV  -ray region) Tail-InLoss-Cone Right Ascension (  ) Relative Intensity Dec. (  ) TeV Cosmic-ray anisotropy in sidereal time frame Abdo A. et al., ApJ, 698, 2121 (2009) 0.5 % 0.3 % Time dependence of Loss-Cone amplitude by ~ 6 TeV Loss-Cone Amplitude

Data analysis 5.7 x events left 3 energy bins 10 <=  < 27 : 4.4 TeV 27 <=  < 47 : 6.2 TeV 47 <=  < 178 : 11 TeV 4 time bins /18 — / /5 — / /14 — / /7 — /6 Data : 1999 Nov.  2008 Dec. (1,916 live days, 9.1 x events) Selections :  shower core in the array  zenith angle < 45 deg. (  sum of the number of particles/m 2 for each counter )

(ROOT MINUIT : Get I(i,j) such that  2 is minimum M. Amenomori, et al., ApJ. 633, 1005 (2005) Analysis Method Zenith On-source Off-SourcesOff-Sources I on, N on on N I off N I Equal I off, N off I(i,j) : Relative Intensity m : sidereal time n : zenith l : azimuth i : right ascension j : declination

anti-siderealsolarsiderealextended-sidereal cycles/yr A year-long observation offsets the mutual influence between the anisotropies in the sidereal and the solar time frames. A spurious anisotropy might remain, however, if there were any seasonal changes in the daily variation of the cosmic-ray intensity in the adjacent time frame. Monthly live time Systematic error

Observed anisotropy & calculation of Loss-Cone amplitude Loss-Cone amplitude: (0.116 ± stat ) % Sys. error from anti-sidereal ( ±0.0032) % syst % Loss-cone amplitude : (0.116 ±0.017) % ※ The error is the linear sum of the stat. & sys. errors. ex.) /5 — TeV Tail-in Loss-Cone  0.1 % Fitting function : third order harmonics function +0.1 %  0.1 % Sidereal Relative Intensity Anti-sidereal (sys.err)

Fitting function :  *(MJD  ) +  Milagro 6 TeV  = (0.97±0.11) x 10  % [/day] Tibet 4.4 TeV  = (0.05 ± 0.13) x 10  % [/day] inconsistent with Milagro (6.1  6.2 TeV  = (0.004 ± 0.099) x 10  % [/day] inconsistent with Milagro (6.6  ) 11 TeV  = (  ± 0.095) x 10  % [/day] inconsistent with Milagro (6.7  Matsushiro 0.6 TeV  = (0.32 ± 0.22) x 10  % [/day] inconsistent with Milagro (5.3  Time dependence of Loss-Cone amplitude Tibet 4.4 TeV 6.2 TeV 11 TeV Milagro 6 TeV Matsushiro 0.6 TeV 0.2 % K. Munakata et al., ApJ, 712,1100 (2010) 0.4 % Relative intensity at Loss-Cone depth 0.4 % Milagro 6 TeV

Summary ● We measured the amplitude of “Loss-Cone” from the year 2000 through 2007, using the data taken by the Tibet AS  experiment. No time dependence of the Loss-Cone amplitude was found at 4.4 TeV, 6.2 TeV and 11 TeV. ● Matsushiro underground muon observatory found no significant change in the Loss-Cone amplitude at 0.6 TeV. ● Our measurements, along with Matsushiro’s, are inconsistent with the one formerly reported by the Milagro experiment.

Thank you for your attention! END