減光曲線から探る星間ダストの 多様性 ( Variation of interstellar dust probed by extinction curves) 野沢 貴也 (Takaya Nozawa) & 福来 正孝 (Masataka Fukugita) (Kavli IPMU, University.

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
REDDENING Nancy Elias de la Rosa. OUTLINE  Interstellar reddening  Extinction law – Cardelli et al.  Reddening in SNIa  Photometric methods  Spectroscopic.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
What can the Interstellar Extinction Curves Tell us About? Takaya Nozawa Masataka Fukugita (Kavli IPMU, University of Tokyo) 2012/08/07.
CfA B.T. Draine: Dust in the submm1 Dust in the sub-mm or: what is  ? B. T. Draine Princeton University 2005 June 14.
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
1 GALEX Angular Correlation Function … or about the Galactic extinction effects.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
26 June 2008SHINE, Zermatt, UT1 High-energy Elemental, Isotopic, and Charge-State Composition in 3 He-rich Solar Energetic Particle Events M.E. Wiedenbeck.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
1 New Spitzer Results for Neon and Sulphur in NGC 6822 Reggie Dufour AU 10/07/2009.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Ia 型超新星の特異な減光則から探る 系外銀河のダスト特性 野沢 貴也 ( Takaya Nozawa ) National Astronomical Observatory of Japan 2015/06/05.
IAU Coll Shanghai 2005 The Dust Obscuration bias in Damped Ly  systems Giovanni Vladilo Osservatorio Astronomico di Trieste Istituto Nazionale.
Lecture on Cosmic Dust Takaya Nozawa (IPMU, University of Tokyo) 2011/12/19 Today’s Contents: 1) Composition of dust 2) Extinction of stellar lights by.
Constraints on small grains from ISO, Spitzer data: Towards predicting the cm-emission of PAHs L. Verstraete N. FlageyIAS, Orsay M. Compiègne.
X-ray Absorption and Scattering by Interstellar Dust: the XMM view Elisa Costantini Max Planck Institute for extraterrestrial Physics (MPE) P. Predehl,
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
National Astronomical Observatory of Japan
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Detection of the 2175Å Dust Extinction Feature at high z Junfeng Wang (Penn State/UFL) Collaborators : Jian Ge (U. of Florida), Pat Hall (Princeton U./York.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) In collaboration with A. Bressan (SISSA), P. Marigo (UNIPD) & L. Danese.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Interstellar Extinction vs. Dust
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Interstellar extinction law and its dust model in the infrared 姜碧沩 北京师范大学天文系 Group members: 高健 王舒 李爱根 etc.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Star Formation and H2 in Damped Lya Clouds
A New View of Interstellar Dust as Revealed by Recent Observations Takashi Onaka (University of Tokyo) ASTRO-F®ISASSpitzer®NASA.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
Galactic Extinction Curves and Interstellar Dust Models Nozawa, T. and Fukugita, M. (Kavli IPMU, University of Tokyo) 2012/05/08.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
“SPITZER observations of luminous obscured Quasars” Enrica Bellocchi in collaboration with A. Comastri, F. Pozzi, C. Vignali, J. Fritz, L. Pozzetti on.
Dust Extinction in GRBs Patricia Schady UCL-MSSL M.J.Page (MSSL-UCL), S.R Oates (MSSL-UCL), M. Still (MSSL-UCL), M.De Pasquale (MSSL-UCL), T. Dwelly (Southampton.
Infrared Polarization and Interstellar Grain Models 红外偏振与星际尘埃模型 李祺 (湘潭大学) 导师:李爱根 星际尘埃模型:简介 星际偏振对尘埃模型的限止 结果与讨论 2014年7月15-19日 大连.
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
On the reddening law observed for Type Ia Supernovae
Understanding the near infrared spectrum of quasars
Shu Wang and Biwei Jiang
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
Dust extinction, emission & polarisation in the diffuse ISM
National Astronomical Observatory of Japan
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Dust Models for the Extinction of Type IIn SN 2010jl Jian Gao, Jun Li, B. W. Jiang Beijing Normal University , 昆明.
Origin and Nature of Dust Grains in the Early Universe
Formation of Dust in the Ejecta of Type Ia Supernovae
(National Astronomical Observatory of Japan)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
2016/09/16 Properties of Interstellar Dust as Probed by Extinction Laws toward Type Ia Supernovae Takaya Nozawa (National Astronomical Observatory of Japan)
Peculiar Extinction Laws observed for Type Ia Supernovae
Dust in supernovae Takaya Nozawa
Mikako Matsuura National Astronomical Observatory of Japan
Ia型超新星の特異な減光則を 引き起こす母銀河ダストの性質
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
2017/01/23 Properties of Dust Accounting for Extinction Laws toward Type Ia Supernovae (Nozawa, T. 2016, Planetary and Space Science, 133, 36) Takaya Nozawa.
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
爆燃Ia型超新星爆発時に おけるダスト形成
Formation and evolution of dust in hydrogen-poor supernovae
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Presentation transcript:

減光曲線から探る星間ダストの 多様性 ( Variation of interstellar dust probed by extinction curves) 野沢 貴也 (Takaya Nozawa) & 福来 正孝 (Masataka Fukugita) (Kavli IPMU, University of Tokyo) 2012/11/30

Extinction curve: wavelength-dependence of extinction caused by interstellar dust grains 1. Extinction curve I0I0 I 0 (1-exp[-τ λ ]) I 0 exp[-τ λ ] ・ essential for knowing the intrinsic SEDs of galaxies ・ depends on physical and optical properties of dust Whittet 2003

2. Interstellar dust models in MW 〇 MRN dust model (Mathis, Rumpl & Nordsieck 1977) ・ dust composition : graphite & silicate (Mg 1.1 Fe 0.9 SiO 4 ) ・ size distribution : power-law distribution n(a)da ∝ a^{-q}da with q = 3.5, μm ≤ a ≤ 0.25 μm 〇 WD01 model (Weingartner & Draine 2001) ・ dust composition : silicate + graphite + PAHs ・ size distribution : power-law with exponential decay + lognormal 0.3 nm ≤ a ≤ 1 μm Optical constants: Draine & Lee (1987)

・ depends on physical and optical properties of dust 3. CCM relationship and R V Fitzpatrick & Massa (2007) 〇 CCM relation (Cardelli, Clayton, & Mathis 1989) ・ A λ /A V = a(x) + b(x) / R V, where x = 1 / λ ・ R V : ratio of total-to-selective extinction R V = A V / (A B – A V ) = 1 / (A B /A V – 1) cf. R V,ave = 3.05–3.10 V B ・ essential for knowing the intrinsic SEDs of galaxies

4. Variety of interstellar extinction curves ・ There are a large variety of interstellar extinction curves ・ How much can the properties of dust grains be changed? gray curves: 328 extinction curves derived by Fitzpatrick & Massa (2007, FM07) blue bars: 2σ ranges including 312 data red bars: 1σ ranges including 224 data Our goal is to find the dust properties that satisfy these extinction ranges

5. Comparison between FM07 and CCM89 black: 1σ range of the FM07 data red: CCM curve with Rv = 2.75 blue: CCM curve with Rv = 3.60 green: extinction curve for the case of Rv=3.1 by WD01 fully consistent in UV region UV-through-IR extinction curvesClose-up of IR extinction curves Results from CCM formula with Rv = are mag higher than the 1σ range in JHK WD01 model is based on result by Fitzpatrick (1999), which is similar to CCM curve w/ Rv=3.1

・ power-law size distribution (a min < a < a max ) a min = um (fixed) q and a max : parameters (same for all grain species) f i,j ➔ a fraction of an element i locked up in a grain j Solar abundance: Grevesse & Sauval (1998) all of Fe (and Mg and Si) are locked in dust grains ・ grain species considered in this paper - graphite, glassy carbon, amorphous carbon, SiC - astronomical silicate (MgFeSiO 4 ), Mg 2 SiO 4 - Fe, Fe 3 O 4, FeS 6. Dust model (spherical grain)

7. Illustration of contour plots The 1σ ranges from FM07 data are classified into three groups UV: UV bump (0.22 μm), FUV dip (0.16 μm), FUV rise (0.125 μm) UB: U band and B band JHK: J band, H band, K band UV UB JHK 1σ range of FM07 data

7-1. Contour plots for f gra /f sil = 1.0 contour plots of a max and q that fulfill the 1σ range of FM07 data for f gra /f sil = 1.0 (M gra /M sil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band Case of 1σ data, f gra /f sil = 1.0 contour plots of a max and q that fulfill the 1σ range of CCM result for f gra /f sil = 1.0 (M gra /M sil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

7-2. Contour plots for f gra /f sil = 0.5 contour plots of a max and q that fulfill the 1σ range of FM07 data for f gra /f sil = 0.5 (M gra /M sil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band Case of 1σ data, f gra /f sil = 0.5 contour plots of a max and q that fulfill the 1σ range of CCM result for f gra /f sil = 0.5 (M gra /M sil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

7-3. Contour plots for f gra /f sil = 0.2 contour plots of a max and q that fulfill the 1σ range of FM07 data for f gra /f sil = 0.2 (M gra /M sil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band Case of 1σ data, f gra /f sil = 0.2 contour plots of a max and q that fulfill the 1σ range of CCM result for f gra /f sil = 0.2 (M gra /M sil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band f C,gra > 0.25

8-1. Piled-up contour for graphite-astro.sil Values of q and a max that meet the 1σ range of FM07 data are confined to be narrow ranges 3.2 < q < um < a max < 0.34 um In previous studies, N H /E(B-V) = N H /(A B -A V ) = 5.8x10 21 cm 3 /mag (Bohlin et al. 1978) In this study, N H /E(B-V) = (5.7±1.7)x10 21 cm 3 /mag (Gudennavar et al. 2012) f C,gra > 0.56

amorphous C ➔ up to ~60 % glassy C ➔ up to ~50 % SiC ➔ up to ~15 % more than 40 % carbon are needed to be locked in graphite Dashed line (f C, grain = 0.7) ・ gra-asil (f C, gra /f C, grain = 1.0) ・ gra-aC-asil (f C, aC /f C, grain = 0.3) ・ gra-gC-asil (f C, gC /f C, grain = 0.3) ・ gra-SiC-asil (f C, SiC /f C, grain = 0.1) 8-2. Piled-up contour for carbon-astro.sil

Fe ➔ up to 100 % Fe3O4 ➔ up to ~80 % FeS ➔ up to 100 % many Fe atoms are not always needed to be locked in silicate Dashed line (f C, gra = 0.7) ・ gra-Fe-fore (f Fe, Fe /f Fe, grain = 1.0) ・ gra-Fe 3 O 4 -sil (f Fe, Fe3O4 /f Fe, grain = 0.8) ・ gra-FeS-sil (f S, FeS = 1.0) 8-3. Piled-up contour for carbon-astro.sil

9-1. Dust properties in SMC Values of q and a max that meet the extinction ranges in SMC are confined to be narrow ranges 3.2 < q < um < a max < 0.35 um

9-2. Dust properties in SMC Values of q and a max that meet the extinction ranges in SMC are confined to be narrow ranges 3.2 < q < um < a max < 0.35 um For SMC, N H /E(B-V) = (2.3±2.2)x10 22 cm 3 /mag (Welty et al. 2012) For MW, N H /E(B-V) = (5.7±1.7)x10 21 cm 3 /mag SMC extinction curve can be explained by the MRN model without graphite (Pei 1992) 0.04 < f C,gra < 0.41

・ The observed ranges of NIR extinction from FM07 do not match with the results from the CCM formula ➔ There is no combination of q and a max that satisfy the observed ranges when CCM results are adopted ・ For graphite-silicate model, the values of q and a max that satisfy the 1σ extinction ranges are, respectively, - 3.2 < q < 3.7 and 0.19 um < a max < 0.34 um 0.56 < f C,gra < 1.0 for MW - 3.2 < q < 3.8 and 0.19 um < a max < 0.35 um 0.04 < f C,gra < 0.41 for SMC ・ ~30 % of graphite can be replaced with amorphous carbon and glassy carbon ・ Most of Fe atoms can be locked in Fe, Fe 3 O 4, and FeS 10. Summary