Heavy Flavor Theory Yukinao Akamatsu (Nagoya/KMI) 2013/07/30PHENIX PHENIX Workshop on Physics Prospects with Detector and Accelerator.

Slides:



Advertisements
Similar presentations
Probing Properties of the QCD Medium via Heavy Quark Induced Hadron Correlations Huan Zhong Huang Department of Physics and Astronomy University of California.
Advertisements

The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
1 Momentum Broadening of Heavy Probes in Strongly Couple Plasmas Jorge Casalderrey-Solana Lawrence Berkeley National Laboratory Work in collaboration with.
Bedanga Mohanty 23rd Winter workshop on nuclear dynamics 1 Color charge dependence of energy loss at RHIC  Introduction What are color factors in QCD.
Functional renormalization – concepts and prospects.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Dual gravity approach to near-equilibrium processes in strongly coupled gauge theories Andrei Starinets Hadrons and Strings Trento July 20, 2006 Perimeter.
1 Heavy Quark Energy Loss Tatia Engelmore Journal Club 7/21.
1 Particle production mechanisms from RHIC to LHC Rene Bellwied Wayne State University 23 rd International Winter Workshop on Nuclear Dynamics, Big Sky.
Theoretical Overview of Open Heavy-Flavor at RHIC and LHC Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA.
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Baryon Strangeness correlatons : signals of a de-confined antecedent Abhijit Majumder Nuclear theory group, Lawrence Berkeley National Lab. In collaboration.
University of Catania INFN-LNS Heavy flavor Suppression : Langevin vs Boltzmann S. K. Das, F. Scardina V. Greco, S. Plumari.
Lecture 7-8: Correlation functions and spectral functions Relation of spectral function and Euclidean correlation functions Maximum Entropy Method Quarkonium.
クォーク・グルーオン・プラズマにおける「力」の量子論的記述
1 Identified Di-hadron Correlation in Au+Au & PYTHIA Simulation Jiaxu Zuo Shanghai Institute of Applied Physics & BNL CCAST Beijing,
Precision Probes for Hot QCD Matter Rainer Fries Texas A&M University & RIKEN BNL QCD Workshop, Washington DC December 15, 2006.
Langevin + Hydrodynamics Approach to Heavy Quark Diffusion in the QGP Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo) /05/09 Heavy.
Complex Plasmas as a Model for the Quark-Gluon-Plasma Liquid
In-medium QCD forces for HQs at high T Yukinao Akamatsu Nagoya University, KMI Y.Akamatsu, A.Rothkopf, PRD85(2012), (arXiv: [hep-ph] ) Y.Akamatsu,
1 AdS/CFT Calculations of Parton Energy Loss Jorge Casalderrey-Solana Lawrence Berkeley National Lab. In collaboration with D. Teaney.
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
Transverse Momentum Broadening of a Fast Quark in a N=4 Yang Mills Plasma Jorge Casalderrey-Solana LBNL Work in collaboration with Derek Teany.
Hadrons: color singlets “white states”
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: F. Riek (Texas A&M), H. van Hees (Giessen), V. Greco.
Heavy quark potential at non-zero temperature Péter Petreczky Hard Probes 2013, Stellenbosch, South Africa, November 4-8, 2013 Motivation : the study and.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 0 Study of the Quark Gluon Plasma with Hadronic Jets What:
Workshop on QCD and RHIC Physics, Hefei, July Heavy Flavors in High Energy Nuclear Collisions ZHUANG Pengfei (Tsinghua University, Beijing) ● J/Psi.
Theory aspects of quarkonia production in heavy ion collisions Peter Petreczky Current status of the theory:
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Early time dynamics in Heavy Ion Collisions, McGill University, Montréal,
Probing the properties of dense partonic matter at RHIC Y. Akiba (RIKEN) for PHENIX collaboration.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
Heavy Quark Energy Loss due to Three-body Scattering in a Quark- Gluon Plasma Wei Liu Texas A&M University  Introduction  Heavy quark scattering in QGP.
High-p T Particles and RHIC Paradigm of Jet Quenching Ahmed M. Hamed NN2012 The 11 th International Conference on Nucleus-Nucleus Collisions 1.
Hydrodynamic Flow from Fast Particles Jorge Casalderrey-Solana. E. V. Shuryak, D. Teaney SUNY- Stony Brook.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Yukinao Akamatsu Univ. of Tokyo 2008/11/26 Komaba Seminar Ref : Y. A., T. Hatsuda and T. Hirano, arXiv: [hep-ph] 1.
Summary of lecture II. Summary of lecture III Correlation functions of static quarks at T>0 and color screening pNRQCD at T>0 and potentials Im V(r,T)
Collisional energy loss becomes probable André Peshier SUBATECH, Université de Nantes - Praha, 20 April
M. Djordjevic 1 Suppression and energy loss in Quark-Gluon Plasma Magdalena Djordjevic Institute of Physics Belgrade, University of Belgrade.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
QQ systems are ideal for strong interactions studies Scales and Effective Field Theories:systematic approach pNRQCD: the QQbar and QQQ potentials Applications.
Production, energy loss and elliptic flow of heavy quarks at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Hard Probes 2010, Eilat October.
Quarkonium Dissociation Temperature in Hot QCD medium within a quasi-particle model.
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Recent developments in lattice QCD Péter Petreczky
Towards understanding the Quark-Gluon Plasma
Review of ALICE Experiments
Introduction to pQCD and TMD physics
Heavy quark potentials and spectral functions Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Theory aspects of quarkonia production in heavy ion collisions
Heavy-Flavor Transport at FAIR
The puzzling relation between the RAA and the v2 for heavy mesons in a Boltzmann and in a Langevin approach F. Scardina, S.K. Das, S. Plumari, V.Greco.
Cyrille Marquet Columbia University
7/6/2018 Nonperturbative Approach to Equation of State and Collective Modes of the QGP Shuai Y.F. Liu and Ralf Rapp Cyclotron Institute + Dept. of Physics.
Yukinao Akamatsu 赤松 幸尚 (Univ. of Tokyo)
Charmonium production in hot and dense matter Péter Petreczky
Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo)
Properties of the Quark-Gluon Plasma
Heavy Quark and charm propagation in Quark-Gluon plasma
Overview of Potential models at finite temperature Péter Petreczky
Nonleptonic Two Body Decays of Charmed Mesons
QCD and Heavy-ion Collisions
Presentation transcript:

Heavy Flavor Theory Yukinao Akamatsu (Nagoya/KMI) 2013/07/30PHENIX PHENIX Workshop on Physics Prospects with Detector and Accelerator

Content 1.Introduction 2.Production 3.Heavy Quarks in Medium 4.Quarkonia in Medium 5.Conclusion & Outlook 2013/07/30PHENIX

1. Introduction QGP Fireball 2013/07/30PHENIX Photon Dilepton Heavy quark Quarkonium Quark-gluon matter Jet Equation of state Collective modes Color charges in medium Opacity of medium Chiral symmetry restoration Collective modes

Factorization Convolution of each process 2013/07/30PHENIX Medium evolution interaction productionevolution Nuclear collision π,K,p,… D,e,μ,… observables Energy loss Diffusion Heavy quarks Quarkonia

2. Production Parton distribution functions Matrix elements by pQCD Formation of bound states and Nuclear effects … 2013/07/30PHENIX

HQ production in p+p FONLL calculation 2013/07/30PHENIX Cacciari et al (06) PHENIX (06)

QQbar production in p+p Color singlet/octet/evaporation models – Bound state formation = non-perturbative process 2013/07/30PHENIX p T (GeV/c) =COM PHENIX (11)

3. Heavy Quarks in Medium Energy loss and diffusion Many approaches (list strong points) – Perturbation theory: clear elementary processes – AdS/CFT: analytical exact result for SYM – Lattice QCD: exact within error bars – Resonant scattering model: non-pert. model 2013/07/30PHENIX

Heavy quark energy loss & diffusion Perturbation theory Horowitz (10) Inelastic scattering Elastic scattering Braaten & Thoma (91) Moore & Teaney (05) Non-relativistic limit: Brownian motion Svetitsky (88) Moore & Teaney (05) Caron-Huot et al (08,09) 2013/07/30PHENIX production In-medium energy loss L HTL

Heavy quark energy loss & diffusion AdS/CFT correspondence Gubser 06, Herzog et al (06) Non-relativistic limit: Brownian motion Casalderrey-Solana & Teaney (06) Son & Teaney (09) 2013/07/30PHENIX production L

Heavy quark diffusion constant Lattice QCD simulation Current correlator (Kubo formula) Quench approximation Ding et al (11) PHENIX

Heavy quark diffusion constant Lattice QCD simulation Force correlator (M  ∞) Banerjee et al (12) Quench approximation Statistical errors (red) Systematic errors (green) Renormalization of electric field 2013/07/30PHENIX

Phenomenology Diffusion constant Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ?? Gubser (07) 2013/07/30PHENIX STAR (07) PHENIX (07) Akamatsu et al (09) Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ?

Phenomenology Diffusion constant Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ? 2013/07/30PHENIX Gubser (07) ALICE (QM12) Single electrons ALICE (12) ALICE (QM12) D mesons

Azimuthal correlation Initial back-to-back correlation decrease 2013/07/30 PHENIX Akamatsu et al (09) Electron-muon correlation to reduce background

Azimuthal correlation Initial back-to-back correlation decrease 2013/07/30 PHENIX Nahrgang et al (13) Radiative vs collision Adare et al (13) Sensitivity to coupling at high temperature

4. Quarkonia in Medium Potential – Free energy – Real-time potential  complex by decoherence Dynamics – Open quantum system – Quantum Brownian motion – Quantum optics 2013/07/30PHENIX

Free energy Lattice simulation 2013/07/30PHENIX Maezawa et al (12) Nf=2+1, improved Wilson fermion, Tc~190

Real-time potential Potential in Schrödinger equation 2013/07/30PHENIX σ(ω;R,T) ω V(R,T)V(R,T) Γ(R,T)Γ(R,T) Laine et al (07), Beraudo et al (08), Brambilla et al (10), Rothkopf et al (12) Some phenomenological applications using complex potential

Real-time potential Potential in Schrödinger equation 2013/07/30PHENIX σ(ω;R,T) ω V(R,T)V(R,T) Γ(R,T)Γ(R,T) Some phenomenological applications using complex potential

Real-time potential Complex potential as 2013/07/30PHENIX Unitary & stochastic evolution Imaginary part from averaging the random phase rotations Akamatsu & Rothkopf (12) So far M=∞; what about M<∞?

Classical picture of the open system M=∞ or M<∞ matters 22 Debye screened force + Fluctuation Drag force Langevin dynamics M=∞M=∞ M<∞M<∞ (stochastic/complex) Potential force  Hamiltonian dynamics Non-potential force  Not Hamiltonian dynamics 2013/07/30PHENIX Svetitsky (88) Young & Shuryak (09) Quantum counter part: Akamatsu (13)

Open quantum system Basics /07/30PHENIX Hilbert space von Neumann equation Trace out the environment Reduced density matrix Master equation (Markovian limit) sys = heavy quarks env = gluons, light quarks

Quantum Brownian motion Langevin dynamics + Debye screening 2013/07/30PHENIX Q Q g q q g g... Independent scatterings... Leading order processes Akamatsu (13) Shallow bound states & unbound states

Quantum optics Level transitions 2013/07/30PHENIX Borghini & Gombeaud (11,12) Deep bound states

5. Summary & Outlook Single HQs: energy loss & diffusion lots of phenomenological works R AA, v 2, and azimuthal correlation Quarkonia: open quantum system complex potential triggers a paradigm shift quantum BM & quantum optics 2013/07/30PHENIX

2013/07/30PHENIX Backup

Factorization Heavy quarks 2013/07/30PHENIX 流体時空発展 interaction productionevolution Nuclear collision π,K,p,… D,e,μ,… observables Energy loss Diffusion

Factorization Quarkonia 2013/07/30PHENIX 流体時空発展 interaction productionevolution Nuclear collision π,K,p,… D,e,μ,… observables

Phenomenology Diffusion constant Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ? Gubser (07) STAR (07) PHENIX (07) Akamatsu et al (09) 2013/07/30PHENIX

Phenomenology Diffusion constant Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ? 2013/07/30PHENIX Gubser (07) ALICE (QM12) Single electrons

Phenomenology Diffusion constant 2013/07/30PHENIX Gubser (07) Pert. ( LO,NLO ) AdS/CFTlatticeRHICLHC DT0.4(NLO)-5(LO) ? ALICE (12) ALICE (QM12) D mesons