The Central Dogma. Life - a recipe for making proteins DNA protein RNA Translation Transcription.

Slides:



Advertisements
Similar presentations
Application of available statistical tools Development of specific, more appropriate statistical tools for use with microarrays Functional annotation of.
Advertisements

1. Principles and important terminology 2. RNA Preparation and quality controls 3. Data handling 4. Costs 5. Protocols 6. Information for collaboration.
Introduction to Microarray Analysis and Technology Dave Lin - November 5, 2001.
Statistics for Microarrays
Introduction to DNA Microarrays Todd Lowe BME 88a March 11, 2003.
DNA microarray and array data analysis
Affymetrix Microarray and Illumina/ Solexa NextGen Sequencing Yuannan Xia, Ph.D Genomics Core Research Facility
The Human Genome Project and ~ 100 other genome projects:
DNA Arrays …DNA systematically arrayed at high density, –virtual genomes for expression studies, RNA hybridization to DNA for expression studies, –comparative.
Central Dogma 2 Transcription mRNA Information stored In Gene (DNA) Translation Protein Transcription Reverse Transcription SELF-REPAIRING ARABIDOPSIS,
Microarray Technology Types Normalization Microarray Technology Microarray: –New Technology (first paper: 1995) Allows study of thousands of genes at.
Information Aspects of Nucleic Acids Measurement Technologies Description of nucleic acid measurement technologies Algorithmic, optimization, data analysis.
Microarrays: Theory and Application By Rich Jenkins MS Student of Zoo4670/5670 Year 2004.
A snapshot that captures the activity
Introduce to Microarray
Next Generation Microarray Technology: Overview of Febit’s Geniom One ® H. Bjørn Nielsen Center for Biological Sequence analysis Technical University of.
Gene Expression BMI 731 Winter 2005 Catalin Barbacioru Department of Biomedical Informatics Ohio State University.
Introduction to DNA microarrays DTU - January Hanne Jarmer.
Gene Expression Data Analyses (1) Trupti Joshi Computer Science Department 317 Engineering Building North (O)
Genomics I: The Transcriptome RNA Expression Analysis Determining genomewide RNA expression levels.
Microarrays: Basic Principle AGCCTAGCCT ACCGAACCGA GCGGAGCGGA CCGGACCGGA TCGGATCGGA Probe Targets Highly parallel molecular search and sort process based.
and analysis of gene transcription
Gene Expression Microarrays Microarray Normalization Stat
with an emphasis on DNA microarrays
Microarrays, RNAseq And Functional Genomics CPSC265 Matt Hudson.
Affymetrix vs. glass slide based arrays
DNA Microarrays M. Ahmad Chaudhry, Ph. D..
Experimental Design and Setup. Experimental Design What is the question? Which experiments will give the answer? How many replicates do we need?
Lecture 22 Introduction to Microarray
Data Type 1: Microarrays
Gene Expression Data Qifang Xu. Outline cDNA Microarray Technology cDNA Microarray Technology Data Representation Data Representation Statistical Analysis.
Introduction to DNA microarrays DTU - May Hanne Jarmer.
Microarray - Leukemia vs. normal GeneChip System.
Scenario 6 Distinguishing different types of leukemia to target treatment.
ARK-Genomics: Centre for Comparative and Functional Genomics in Farm Animals Richard Talbot Roslin Institute and R(D)SVS University of Edinburgh Microarrays.
Introduction to DNA microarray technologies Sandrine Dudoit, Robert Gentleman, Rafael Irizarry, and Yee Hwa Yang Bioconductor short course Summer 2002.
What Is Microarray A new powerful technology for biological exploration Parallel High-throughput Large-scale Genomic scale.
Genomics I: The Transcriptome
GeneChip® Probe Arrays
Topic intro slides More complete coverage of components involved in gene expression More information on expression technologies -what would the ideal chip.
MICROARRAY TECHNOLOGY
1 Genomics The field of biology based on studying the entire DNA sequence of an organism - its “genome”. Genomics tools don’t replace classical genetics.
Introduction to Microarrays.
DTU - January Hanne Jarmer
DNA Microarrays M. Ahmad Chaudhry, Ph. D. Director Microarray Facility University of Vermont.
Idea: measure the amount of mRNA to see which genes are being expressed in (used by) the cell. Measuring protein might be more direct, but is currently.
Microarray (Gene Expression) DNA microarrays is a technology that can be used to measure changes in expression levels or to detect SNiPs Microarrays differ.
Introduction to Microarrays. The Central Dogma.
Overview of Microarray. 2/71 Gene Expression Gene expression Production of mRNA is very much a reflection of the activity level of gene In the past, looking.
DNA Gene A Transcriptional Control Imprinting Histone Acetylation # of copies of RNA? Post Transcriptional Processing mRNA Stability Translational Control.
ANALYSIS OF GENE EXPRESSION DATA. Gene expression data is a high-throughput data type (like DNA and protein sequences) that requires bioinformatic pattern.
Soybean Microarrays Microarray construction An Introduction By Steve Clough November 2005.
Lecture 23 – Functional Genomics I Based on chapter 8 Functional and Comparative Genomics Copyright © 2010 Pearson Education Inc.
DNA Microarray Overview and Application. Table of Contents Section One : Introduction Section Two : Microarray Technique Section Three : Types of DNA.
Transcriptome What is it - genome wide transcript abundance How do you obtain it - Arrays + MPSS What do you do with it when you have it - ?
Introduction to Oligonucleotide Microarray Technology
Microarray: An Introduction
MICROARRAY. Microarray  A multiplex lab-on-a-chip  A 2D array on a solid substrate (Usually a glass slide or silicon thin-film cell) that assays large.
Hybridization.
Using Web-Based Tools for Microarray Analysis
Microarray - Leukemia vs. normal GeneChip System.
The Basics of cDNA Microarray Technology
Functional Genomics in Evolutionary Research
Microarray Technology and Applications
Introduction to cDNA Microarray Technology
What does Smoking do to my Genes?
Introduction to Microarrays.
Getting the numbers comparable
How can we use science and technology to solve world food crisis. M
Data Type 1: Microarrays
Presentation transcript:

The Central Dogma

Life - a recipe for making proteins DNA protein RNA Translation Transcription

ATCTTTTTCGGCTTTTTTTAGTATCCACAGAGGTTATCGACAACATTTTCACA TTACCAACCCCTGTGGACAAGGTTTTTTCAACAGGTTGTCCGCTTTGTGGAT AAGATTGTGACAACCATTGCAAGCTCTCGTTTATTTTGGTATTATATTTGTGT TTTAACTCTTGATTACTAATCCTACCTTTCCTCTTTATCCACAAAGTGTGGAT AAGTTGTGGATTGATTTCACACAGCTTGTGTAGAAGGTTGTCCACAAGTTGT GAAATTTGTCGAAAAGCTATTTATCTACTATATTATATGTTTTCAACATTTAAT GTGTACGAATGGTAAGCGCCATTTGCTCTTTTTTTGTGTTCTATAACAGAGA AAGACGCCATTTTCTAAGAAAAGGAGGGACGTGCCGGAAGATGGAAAATAT ATTAGACCTGTGGAACCAAGCCCTTGCTCAAATCGAAAAAAAGTTGAGCAA ACCGAGTTTTGAGACTTGGATGAAGTCAACCAAAGCCCACTCACTGCAAGG CGATACATTAACAATCACGGCTCCCAATGAATTTGCCAGAGACTGGCTGGAG TCCAGATACTTGCATCTGATTGCAGATACTATATATGAATTAACCGGGGAAGA ATTGAGCATTAAGTTTGTCATTCCTCAAAATCAAGATGTTGAGGACTTTATGC CGAAACCGCAAGTCAAAAAAGCGGTCAAAGAAGATACATCTGATTTTCCTCA AAATATGCTCAATCCAAAATATACTTTTGATACTTTTGTCATCGGATCTGGAA ACCGATTTGCACATGCTGCTTCCCTCGCAGTAGCGGAAGCGCCCGCGAAAG CTTACAACCCTTTATTTATCTATGGGGGCGTCGGCTTAGGGAAAACACACTT AATGCATGCGATCGGCCATTATGTAATAGATCATAATCCTTCTGCCAAAGTGG TTTATCTGTCTTCTGAGAAATTTACAAACGAATTCATCAACTCTATCCGAGAT AATAAAGCCGTCGACTTCCGCAATCGCTATCGAAATGTTGATGTGCTTTTGA TAGATGATATTCAATTTTTAGCGGGGAAAGAACAAACCCAGGAAGAATTTTT CCATACATTTAACACATTACACGAAGAAAGCAAACAAATCGTCATTTCAAGT GACCGGCCGCCAAAGGAAATTCCGACACTTGAAGACAGATTGCGCTCACGT TTTGAATGGGGACTTATTACAGATATCACACCGCCTGATCTAGAAACGAGAA TTGCAATTTTAAGAAAAAAGGCCAAAGCAGAGGGCCTCGATATTCCGAACG AGGTTATGCTTTACATCGCGAATCAAATCGACAGCAATATTCGGGAACTCGA AGGAGCATTAATCAGAGTTGTCGCTTATTCATCTTTAATTAATAAAGATATTA ATGCTGATCTGGCCGCTGAGGCGTTGAAAGATATTATTCCTTCCTCAAAACC GAAAGTCATTACGATAAAAGAAATTCAGAGGGTAGTAGGCCAGCAATTTAAT ATTAAACTCGAGGATTTCAAAGCAAAAAAACGGACAAAGTCAGTAGCTTTTC CGCGTCAAATCGCCATGTACTTATCAAGGGAAATGACTGATTCCTCTCTTCC TAAAATCGGTGAAGAGTTTGGAGGACGTGATCATACGACCGTTATTCATGCG CATGAAAAAATTTCAAAACTGCTGGCAGATGATGAACAGCTTCAGCAGCATG TAAAAGAAATTAAAGAACAGCTTAAATAGCAGGACCGGGGATCAATCGGGG AAAGTGTGAATAACTTTTCGGAAGTCATACACAGTCTGTCCACATGTGGATA GGCTGTGTTTCCTGTCTTTTTCACAACTTATCCACAAATCCACAGGCCCTAC TATTACTTCTACTATTTTTTATAAATATATATATTAATACATTATCCGTTAGGAG GATAAAAATGAAATTCACGATTCAAAAAGATCGTCTTGTTGAAAGTGTCCAA GATGTATTAAAAGCAGTTTCATCCAGAACCACGATTCCCATTCTGACTGGTA TTAAAATTGTTGCATCAGATGATGGAGTATCCTTTACAGGGAGTGACTCAGA TATTTCTATTGAATCCTTCATTCCAAAAGAAGAAGGAGATAAAGAAATCGTC ACTATTGAACAGCCCGGAAGCATCGTTTTACAGGCTCGCTTTTTTAGTGAAA TTGTAAAAAAATTGCCGATGGCAACTGTAGAAATTGAAGTCCAAAATCAGTA TTTGACGATTATCCGTTCTGGTAAAGCTGAATTTAATCTAAACGGACTGGAT GCTGATGAATATCCGCACTTGCCGCAGATTGAAGAGCATCATGCGATTCAGA TCCCAACTGATTTGTTAAAAAATCTAATCAGACAAACAGTATTTGCAGTGTC CACCTCAGAAACACGCCCTATCTTGACAGGTGTAAACTGGAAAGTGGAGCA AAGTGAATTATTATGCACTGCAACGGATAGCCACCGTCTTGCATTAAGAAAG GCGAAACTTGATATTCCAGAAGACAGATCTTATAACGTCGTGATTCCGGGAA AAAGTTTAACTGAACTCAGCAAGATTTTAGATGACAACCAGGAACTTGTAGA TATCGTCATCACAGAAACCCAAGTTCTGTTTAAAGCGAAAAACGTCTTGTTC TTCTCACGGCTTCTGGACGGGAATTATCCAGACACAACCAGCCTGATTCCGC AAGACAGCAAAACAGAAATCATTGTGAACACAAAAGAATTCCTTCAGGCCAT TGATCGTGCATCTCTTTTAGCTAGAGAGGGACGCAACA DNA

The Central Dogma

Hybridization A A A T T G G C C T A T G A T G C C A A A T T G G C C T A T G A T G C C

Introduction to Microarrays

Microarrays - The Concept Measure the level of transcript from a very large number of genes in one go CELL RNA

Microarrays - The Technologies Stanford Microarrays Affymetrix

Why? RNA

How? gene specific DNA probes labeled target gene mRNA

Stanford Microarrays

Coating glass slides Deposition of probes Post-processing Hybridization

Coating 1. Rinse of slides:NaOH and EtOH 2. Wash with water 2 h - shaking 3. Coat slides:poly-L-lycine 1 h - shaking 4. Wash and dry

Making Microarrays 1. Produce probes 2. Print by the use of a robot oligos cDNA library PCR products

Spotting - Mechanical deposition of probes

16-pin microarrayer

Microarrayer

Making Microarrays 1. Produce probes 2. Print by the use of a robot oligos cDNA library PCR products 3. Post-process: rehydrate snap dry UV-cross link block surface

Sample preparation 1. Design experiment Question? Replicates? Test? 2. Perform experiment 4. Label RNA Amplification? Direct or indirect? Label? wild type mutant 3. Precipitate RNA Eukaryote/prokaryote? Cell wall?

mRNA cDNA Cy3-cDNACy5-cDNA SAMPLE CONTROL Stanford microarrays DESIGN and ORDER PROBES

Affymetrix GeneChip ® oligonucleotide array 11 to 20 oligonucleotide probes for each gene On-chip synthesis of 25 mers ~ genes per chip good quality data – low variance

Catalog Arrays Human Mouse Rat Arabidopsis C. elegans Canine Drosophila E. coli P. aeruginosa Plasmodium/Anopheles Vitis vinifera (Grape) Xenopus laevis Yeast Zebrafish NimbleExpress™ Array Program

Fluidic Station and Scanner

The Affymetrix Genechip ®

TTT T T T T T T T A A A A A A A AAA Photolithography in situ synthesis Spacers bound to surface with photolabile protection groups Mask #1 Mask #2

Photolithography - Micromirrors NimbleExpress™ Array Program

Oligonucleotide Synthesis Detritylisation (Deblock A solution) O O B P N CEO NPPOC Oxidation (Oxidizer) O O B O O B P O CEOO NPPOC Addition (Amidite) O O B O O B P O CEO NPPOC Photo-Deprotection (Deblock L) O O B P N CEO NPPOC

Capping of uncoupled amidites O O B O O B P O CEOO NPPOC O O B O O B P O CEOO O O B O O B P O CEOO O O B O O B P O CEOO O O B O O B P O CEOO HO

The Affymetrix GeneChip ® A gene is represented like this: - Perfect Match (PM) - MisMatch (MM) PM MM PM: CGATCAATTGCACTATGTCATTTCT MM: CGATCAATTGCAGTATGTCATTTCT

The Technologies - Costs - Flexibility - Data Quality Affymetrix Spotter

Facility setup: Stanford Microarrays < 100,000 USD Affymetrix< 250,000 USD The Technologies - Cost Cost pr. array Stanford Microarrays USD Affymetrix USD NimbleExpress™ Array Program - a bit more expensive

NimbleExpress™ Array Program - 282,000 unique features (probes) - Design fee: 3,000 USD USD/array (minimum 10) - few weeks before delivery - can be run on the Affymetrix equipment

The Technologies - Flexibility Stanford microarrays: Are flexible, but new probes must be ordered each time Affymetrix arrays: Are not flexible, unless you order the NimbleExpress™ chip

The Technologies - Data Quality Reproducibility of data: (Pearson’s correlation coefficient) Stanford microarrays: Affymetrix:  0.95

The Technologies - Choice of Stanford microarrays: If you work with unsequenced species Low budget Affymetrix: Only sequenced species High data quality

Analysis of Data Normalization: Linear or non-linear

Is it worth it? Number of known positives Number of significantly affected genes Qspline normalization Linear normalization Known positives versus the total number of significantly affected genes at 5 different cutoffs in the TnrA experiment

Analysis of Data Normalization: Linear or non-linear Statistical test: student’s t-test ANalysis Of VAriance (ANOVA) Analysis: Principle Component Analysis (PCA) Clustering and visualization

Break - 15 minuttes After break: - introduce yourself - why are you here?