H.-G. Moser Max-Planck-Institut für Physik Semiconductor Laboratory 1 HLL Structure Devices Projects -MPE, CFEL -MPP: ATLAS upgrade SIPMs Belle II MPP.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
SiPM Interconnections to 3D electronics Jelena Ninkovic Max-Planck-Institute for Physics, Munich, Germany SiMPs basics Why do we need 3D interconnections.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
Outline: Motivation for a backside illuminated SiPM (BID-SiPM)
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI Apr Pixel Detectors based on 3D.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
Position Sensitive Detectors in HEP
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
A. Macchiolo, Pixel 2010 Conference, Grindelwald, 6-10 Sptember Anna Macchiolo L. Andricek, M. Beimforde, H.G. Moser, R. Nisius, R.H. Richter, P.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
The Belle II DEPFET Pixel Detector
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Thinning and Interconnection DEPFET Meeting, Valencia, Sept Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples for thermal mock-ups.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
PXD ASIC review, October 2014 ASIC Review 1 H-.G. Moser, 18 th B2GM, June 2014 Date and Location MPP, October 27, 10:00 – October 28, 16:00, Room 313 Reviewers:
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
6 th Belle PAC, KEK, February 26 and PXD - EVO, 5/March/2012 Ladislav Andricek, MPI für Physik, HLL 1
Jelena Ninković Testing PXD6 - summary and plans Jelena Ninkovic for the HLL team.
H.-G. Moser, 6 th PXD/SVD workshop, Pisa, Oct PXD Summary 1 DEPFET Sensors production yield inter-metal insulation EMCM electronic tests ASICs Schedule.
On-Module Interconnection and CNM Projects DEPFET Meeting, Bonn, February Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
Page 1 Liverpool January 11th, 2012 LHCb Upgrade Meeting Planar Silicon Detectors I. Tsurin Generic sensor R&D ATLAS-oriented commitments LHCb-oriented.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Semiconductor Laboratory
Progress with GaAs Pixel Detectors
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
Characterization and modelling of signal dynamics in 3D-DDTC detectors
The CSOI approach for integrated micro channels
Hybrid Pixel R&D and Interconnect Technologies
Highlights of Atlas Upgrade Week, March 2011
DEPFET Active Pixel Sensors (for the ILC)
PXD Summary Tests PXD9 Pilot Production ASICs Components Plans:
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Presentation transcript:

H.-G. Moser Max-Planck-Institut für Physik Semiconductor Laboratory 1 HLL Structure Devices Projects -MPE, CFEL -MPP: ATLAS upgrade SIPMs Belle II MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 2 Structure and Organisation Joint Laboratory of MPI für Physik MPI für extraterrestrische Physik Directors: S. Bethke (MPP) K. Nandra (MPE) Head of laboratory:H.-G. Moser (MPP)L. Strüder (MPE) Personal MPP Project Review MPP Personal Senior Staff:L. Andricek, G. Liemann, H.-G. Moser, R. Richter, A. Wassatsch Postdocs:A. Macchiolo (ATLAS/SCT), J. Ninkovic (MINERVA) Technicians: Z. Albrechstkirchinger, G. Fuchs, A. Plis, M. Schnecke, C. Weber Secretaries: E. Fleischmann, P. Schmalhofer IT:J. Jakowitsch PhD-Students:C. Jendrysik, C. Koffmane, A. Ritter, M.Tesar Master Students: F. Müller, S. Petrovics MPP;21MPE: 30PNS45

H.-G. Moser Max-Planck-Institut für Physik Devices Strip and Pixel Detectors (ATLAS SCT and Pixel) Silicon Drift Detectors pn-CCD (fully depleted) (XMM-Newton, eRosita) Silicon Photomultipliers Thin Pixel detectors + 3D Integration (sLHC, rad hard) DEPFET Active Pixel Detectors 3

H.-G. Moser Max-Planck-Institut für Physik HLL Projects MPP Project Review Pixel sensorsPn-CCDsDEPFET APSSiMPl SIPM MPE (x-ray astronomy) CFEL/ASG (x-ray lasers) MPE (HEP) MPE (astro- particle) eRosita BepiColomboIXO/ATHENA CAMP DSSC Pixel upgrade Belle II PXD (ILC) ILC calorimeter CLIC tracking Cerenkov telescopes

H.-G. Moser Max-Planck-Institut für Physik 5 eROSITA XMM ROSAT Science Goals  First imaging all-sky survey up to 10 keV Investigation of dark energy and dark matter Launch: 2013 Next: BepiColombo (Mission to Mercury): 2014 ATHENA (with DEPFET sensor) -> 2020 eRosita (2013) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 6 Hard X-ray SASE Free Electron Lasers LINAC COHERENT LIGHT SOURCE LCLS SCSS SPring-8 Compact SASE Source European XFEL Facility 2010 MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik CFEL Projects MPP Project Review PN CDD for CAMP CFEL AGS Multi Purpose 2 CCDs with 1k x 1k pixels Operated at LCLS (SLAC) Readout time: 7ms (150 fps) LCLS frequency: 120Hz Mimi virus experiment: Janos Hajdu Nature 470, 78–81 (03 February 2011)

H.-G. Moser Max-Planck-Institut für Physik DEPFET for XFEL at DESY MPP Project Review Far too fast for CCDs => DEPFET sensor with single pixel readout Another interesting feature Signal compression in sensor => Extend dynamic range

H.-G. Moser Max-Planck-Institut für Physik MPP Projects: Need For Thin Silicon Thin pixel sensors for ATLAS -Good CCE after irradiation -Less material -Thickness: 75 – 150 µm Thin DEPFET active pixel sensors for Belle II (and ILC) -Low multiple scattering -Belle II 0.20% X  m 50  m Cut through the matrix n+n+ p+p+ n - non-depleted region n - depleted gap region n SiMPl SiPMs with bulk integrated quench resistors -Simple processing -Ideal for 3D integration -Need tuning of pitch, bulk resistivity and thickness => Thin silicon ~ 50 µm 9 MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 10 Sensor Thinning ? Process backside e.g. structured implant Wafer bonding SOI process Thinning of top wafer (CMP) Processing etching of handle wafer (structured) diodes and large mechanical samples Belle II module Need thin (50µm-75µm) self supporting all silicon module MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 11 ATLAS pixel upgrade: sensor production for FE-I4  6 SCM FE-I4 with IBL guard-rings  2 SCM FE-I4 with full guard-rings  7 DCM FE-I4 with IBL guard-rings  Production of IBL sensors on SOI p-bulk material with 5 wafers with an active thickness of 150  m  Some problems with phosphorous contaminations => repair needed and done  Outsourcing (VTT?) <- Bump bonded by IZM Source scan -> FE-I3 FE-I4 Pixel50x400µm² 50x200µm² Matrix18x160 80x336 Size7.4x11mm² 20x19mm² MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 12 New pixel detector concept New pixel detector concept based on 3D integration  Thin sensors and ASICs  Backside connectivity for compact module design (eventually 4 side buttable)  High density interconnection. MPP Project Review Build demonstrator using ATLAS pixel chip (FE-I2/3) and thin pixel sensors made by MPI (complete wafers with FEI2, FEI3 chips available!) Interconnection with SLID and ICV technology by Fraunhofer EMFT Demonstration of post-processing of standard ASICs with via last test sensors (strip, pixel) on 75mm and 150µm SOI wafer

H.-G. Moser Max-Planck-Institut für Physik 13  SLID modules glued and wire-bonded to a modified version of the ATLAS pixel detector board (Bonn University)  Measurements performed with the ATLAS read-out system USBPix SLID Module MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 14 d= 75  m Collected Charge with 90 Sr: compatible with CCE of a 75µm thick sensor Signal map: all channels connected and functional Module 10: Results Noise distribution: comparable to standard ATLAS module Charge collection after irradiation (2x10 15 n/cm²) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 15 R&D program Sensor/ASIC interconnection using SLID -ASIC thinned to 200 µm -No vias, integrated fanout on sensor for service connection Sensor/ASIC interconnection using SLID -ASIC thinned to 50 µm -vias for service connections (fanouts for redundancy) Future: SLID interconnection of sensors/ 3D FEI4 Sensor/ASIC interconnection using SLID -ASIC thinned to 200 µm -No vias, integrated fan-out on sensor for service connection Sensor/ASIC interconnection using SLID -ASIC thinned to ~50 µm -vias for service connections (fan-outs for redundancy) Future: SLID interconnection of sensors/ 3D FEI4 Sensor/ASIC interconnection using SLID -ASIC thinned to 200 µm -No vias, integrated fan-out on sensor for service connection Sensor/ASIC interconnection using SLID -ASIC thinned to ~50 µm -vias for service connections (fan-outs for redundancy) Future: SLID interconnection of sensors/ 3D FEI4 Supported by AIDA FP7 EU project (WP3) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 16 SiMPl: silicon photomultipliers with integrated bulk resistors - Components of a SIPM cellSIMPL(E) approach No need of polysilicon Unobstructed entrance window (nor resistors, Al-contacts) for high fill factor Simple technology, easy and cheap production Need to match wafer thickness, resistivity, and pixel size  Need for SOI or epi material  Only small variation of the pixel size on one wafer MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 17 IEEE NSS/MIC 2009 Orlando, Florida 17 Prototype production >130 different chips 6mm 30x30 arrays 10x10 arrays MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 18 Prototype production: results High homogeneity over big distances! cells arrays placed over 6mm distance High homogeneity within the array! High linearity! MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Fill factor & Cross Talk & Photon Detection Efficiency Pitch / GapFill factorCross talk meas. (  V=2V) PDE calc. (  V=2V) PDE calc. (  V=5V) 130  m / 10  m85.2%29%39%61% 130  m / 11  m83.8%27%38%60% 130  m / 12  m82.4%25%37%59% 130  m / 20  m71.6%15%32%52% 19 Produced SiMPl devices have the world record in the fill factors!  V=2V  V=1V Hamamatsu MPPC SiMPL  V=2V  V=1V SiMPl devices have extremely high fill factors and still lower cross talk! No special cross talk suppression technology applied just intrinsic property of SiMPl devices MPP Project Review

H.-G. Moser Max-Planck-Institut für Particle Detection 20 Excellent time stamping due to the fast avalanche process (<1ns) MIP gives about 80pairs/  m  huge signal in SiPM  allows operation at small  V Reduction of dark rate and cross talk by order of magnitude 10% GE >98% MIP detection Dark rate: 1 MHz/mm² = 1 hit/µm²/s = O(Belle II) With 20 µm pitch and 12 ns time stamp: occupancy: 2.5 x10 -6 Power (analogue): ~ 5 µW/cm² (Dominated by dark rate) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Next generation SiMPl devices 21 n+n+ n - non-depleted region n - depleted gap region n TDC, Photon counter, active recharge Cell electronics Bond readout ASICs on top surface Blind for light Sensitive to MIPs -> tracker ‘easy’ flip chip bonding (depends on pitch) Bond to back surface (after thinning) Light sensitive Single photon imager 3D devices without TSV ! Bonding on thin devices n+n+ n - non-depleted region n - depleted gap region n TDC, Photon counter, active recharge Cell electronics MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Pixels: 50 x 50(75) µm 75µm thick0.20% X 0 2 cm DPEFET PXD for Belle II 22 Each pixel is a p-channel FET on a depleted bulk Electrons accumulate in the internal gate and modulate the transistor current (g q ~ 400 pA/e - ) Fully depleted: => large signal, fast signal collection Low capacitance, internal amplification: => low noise High S/N even for thin sensors (75µm) Rolling shutter mode (column parallel) => 20 µs frame readout time => Low power (only few lines powered MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Sensor Production at MPI semiconductor lab finished in SOI material: 50 µm sensor wafer (production started before 75µm was decided) -6 wafers (+ 2 monitor wafers on standard material) -Small test sensors -Full size sensors for prototyping -Technology & design variations PXD6 production 23 Bad yield in 1 st sub batch; Al etch step: ~6% of large matrices Remaining wafers were processed differently Batch Nr.Overall yield of half-ladders 1 (3SOI +1 ref)1/16 =6.25% 2 (3SOI +1 ref)4/16=25% (afterAl1 100% - 16/16) 3 (2SOI)4/8=50% (after Al1 100% - 8/8) We still want to do better Special R&D project in order to improve yield further. Recipe will be transferred to prototype production MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik First Thin DEPFETs  m 50  m Protection cover for etchingWafer after etching Cut through a small test matrixSide view of a matrix cut through MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Lab test of thin DEPFET 25 DCDB readout chip, Bump bonded on interface board PXD6 DEPFET matrix (64x32 ) Switcher control chip 450µm FZ 50µm SOI Signal scales with thickness (CURO readout) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Test Beam Test beam at CERN, October 2011 a)PXD6, 50µm, L=4µm, standard ox:S/N ~ 40 b)PXD6, 50µm, L=6µm, thin ox:S/N ~ 20 thin oxide not yet optimized => smaller S/N DCD V1 does not allow optimal I drain final sensors are 50% thicker => S/N > 40 expected for optimal settings Readout speed up to 320 MHz (100ns readout time) single pixel cluster all  =12.3µm single  =12.8µm Multiple  =8.6µm 26 MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik PXD9 Prototypes Slip of Belle II schedule gave us time for a intermediate prototype production: PXD9 Fully fledged protoypes! Final design and wafer layout! 4 outer and 2 inner modules 48 test matrices and devices + yield control structures Lean production: Two sub batches of 6 wafers each: Planed to be ready by Spring 2013  Test full functionality (incl. rad. hardness)  Yield determination  Material for trial assembly  System test  Backup modules for Belle II (outer layer) Production of final sensors scheduled 2013/ MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Design Features thanks to Andrea s Liebel PNSen sor 3D simulation of potentials to optimize performance: charge collection, clear efficiency, rad. hardness Analyse PXD6 and avoid weak points (failure tolerant design) 3D model of layout Analysis of electrical network MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik 29 Conclusions MPE/CFEL: CCDs an DEPFETs for X-ray imaging very successful operation of CCDs at LCLS MPP Projects ALTAS upgrade thin Si-sensors work (better) as expected thin planar sensors are candidate for IBL and upgrade 3D interconnection progressing SiPMs SiMPL devices function! Project Seminar by Jelena Ninkovic: January 24 Belle II first thin DEPFET sensors tested Prototype production in 2012 Series production in 2013/2014 Change of organisation ahead (2013) MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Change of Organisation Motivation : »Single administrative entity. »Re - organisation of commercial activities. »Be open to more customers from the MPG (CFEL..). Consequences: »HLL will become a MPG central unit (partly like digital library). One central administration (by MPE?). Personal will be (temporarily) transferred (n.b.: no lay-offs). »Control and financing by ‘stakeholders’ (MPP, MPE, ….) & GV. »Separation of PNSensor activities: full cost compensation for use of clean room for SDD production return will be shared by stakeholders (and GV) Change will (probably) happen by 2013 MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Backup MPP Project Review

H.-G. Moser Max-Planck-Institut für Physik Matrix Pretest 32 Unfortunately we made a mistake thinning the first 4 wafers. Some Al lines contacting the transistor drains were etched away in a developing step. 0 transistors connected 16 transistors connected 32 transistors connected 2 wafers repaired with improved process ~ 100% ok MPP Project Review Repaired by sputtering and structuring additional Al layer Some shorts introduced 2 wafers processed later: unaffected and etched without damage

H.-G. Moser Max-Planck-Institut für Physik MPP Project Review Implementation of a copper line for the bump bond process of the ASICs we need a solderable landing pad on the sensor substrate  install Cu (and Sn if needed) process at HLL (almost ready) the Cu layer is effectively a 3 rd metal on the sensor – ρ(Cu) / ρ(Al) ≈ 0.63  low impedance wiring layer and additional routing freedom 33 EMCM (electrical multi chip module)  Test 3 rd layer metal (Cu)  Exercise interconnection  Test module concept  Noise tests Design almost finished Fabrication next year