1 NTNU, November 2008Norwegian University of Science and Technology (NTNU), June 2009 Scattering Theory of Charge-Current Induced Magnetization Dynamics.

Slides:



Advertisements
Similar presentations
Chudnovsky Symposium, Mar.13&14, Phys. Rev. B 33, 251 (1986) citations.
Advertisements

Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Spin Torque for Dummies
New Directions in Energy Research or a Magnetic Quirk?
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Propagation of surface plasmons through planar interface Tomáš Váry Peter Markoš Dept. Phys. FEI STU, Bratislava.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Stochastic theory of nonlinear auto-oscillator: Spin-torque nano-oscillator Vasil Tiberkevich Department of Physics, Oakland University, Rochester, MI,
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
J. Fernandez-Rossier, M. Braun and A. H. MacDonald
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
"Spin currents in noncollinear magnetic structures: when linear response goes beyond equilibrium states"
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Effects of Magnetic Field on Two-Plasmon Decay Instability in Homogeneous Plasma Xinfeng Sun ( 孙新锋 ), Zhonghe Jiang ( 江中和 ), Xiwei Hu ( 胡希伟 ) School of.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Enhancement of Kondo effect through Rashba spin-orbit interactions. Nancy Sandler Dept. of Physics and Astronomy Ohio University In collaboration with:
Current research in current-driven magnetization dynamics S. Zhang, University of Missouri-Columbia Beijing, Feb. 14, 2006.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
1 EEE 498/598 Overview of Electrical Engineering Lecture 11: Electromagnetic Power Flow; Reflection And Transmission Of Normally and Obliquely Incident.
Aerodynamics Linear Motion (Moving Air ).
Exam review Inductors, EM oscillations
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.
Sebastian T. B. Goennenwein Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften M. Althammer, F. D. Czeschka, J. Lotze, S. Meyer, M. Schreier,
Spin currents in non- collinear magnetic tunnel junctions and metallic multilayers Peter M Levy New York University, USA.
1 Heat Conduction in One- Dimensional Systems: molecular dynamics and mode-coupling theory Jian-Sheng Wang National University of Singapore.
Berry Phase Effects on Electronic Properties
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Microscopic theory of spin transport
Optical pure spin current injection in graphene Julien Rioux * and Guido Burkard Department of Physics, University of Konstanz, D Konstanz, Germany.
The Structure and Dynamics of Solids
Charge pumping in mesoscopic systems coupled to a superconducting lead
Transport in Solids Introduction Peter M Levy New York University.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
UPB / ETTI O.DROSU Electrical Engineering 2
Inductance and Capacitance Response of First Order RL and RC
EE201C: Winter 2012 Introduction to Spintronics: Modeling and Circuit Design Richard Dorrance Yuta Toriyama.
MTJ Design Space Design Space v3.
Structure and dynamics from the time-dependent Hartree-Fock model
Gauge structure and effective dynamics in semiconductor energy bands
National University of Singapore
Classical Mechanics PHYS 2006 Tim Freegarde.
Department of Physics ,,Fudan Unviversity, Shanghai, China
Internal tunneling effect in an entangled cold atom condensate
Compact Modeling of MTJs for use in STT-MRAM
6NHMFL, Florida State University, Tallahassee, Florida 32310, USA
Optical signature of topological insulator
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
E&M II Griffiths Chapter 8.
Spin-triplet molecule inside carbon nanotube
Kenji Kamide* and Tetsuo Ogawa
Tony Leggett Department of Physics
Information Storage and Spintronics 18
Presentation transcript:

1 NTNU, November 2008Norwegian University of Science and Technology (NTNU), June 2009 Scattering Theory of Charge-Current Induced Magnetization Dynamics Kjetil Magne Dørheim Hals (NTNU) Arne Brataas (NTNU) Yaroslav Tserkovnyak (UCLA)

2 NTNU, November 2008 Introduction J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) L. Berger, Phys. Rev. B 54, 9353 (1996) Spin-Transfer-Torque Transverse spin current absorbed by the ferromagnet. Incident spin current Transmitted spin current Ferromagnet M Acts as a torque on the magnetization. Definitions:

3 NTNU, November 2008 Introduction Seen in experiments M. Tsoi et al., Phys. Rev. Lett. 80 (1998), p J.Z. Sun, J. Magn. Magn. Mater. 202 (1999), p E.B. Myers et al. Science 285 (1999), p J.A. Katine et al. Phys. Rev. Lett. 84 (2000), p M. Tsoi et al. Nature 406 (2000), p.46. S.I. Kiselev et al. Nature 425 (2003), p W.H. Rippard et al. Phys. Rev. Lett. 92 (2004), p I.N. Krivorotov et al. Science 307 (2005), p. 228.

4 NTNU, November 2008 Introduction Theory Systems without spin-orbit coupling : Based on: Conservation of angular momentum X. Waintal, E.B. Myers, P.W. Brouwer, D.C. Ralph, Phys. Rev. B 62 (2000), p A. Brataas, Yu.V. Nazarov and G.E.W. Bauer, Phys. Rev. Lett. 84 (2000), p M.D. Stiles and A. Zangwill, Phys. Rev. B 66 (2002), p General systems: Based on: Calculation of exchange-correlation energy. A. S. Nunez and A. H. MacDonald Solid State Commun.,139 (2006), p. 31.

5 NTNU, November 2008 Introduction Theory Example : Magnetoelectronic circuit theory (A. Brataas et al., PRL 84, 2481 (2000) ) LRFerromagnet Scattering matrix r mn,LL t mn,RL Torque on ferromagnet in spin conserving system m,n: Labels transverse modes n=1n=2

6 NTNU, November 2008 Introduction 2) Rashba-Model: Spin-orbit coupling induces an out-of-equilibrium spin density (A. Manchon and S. Zhang Phys. Rev. B 78, (2008) ). When applying an electric field, the SO-term acts as an effective magnetic field that induces an out-of-eqv. spin density Recent observations: 1) A. Chernyshov, M. Overby, X. Liu, J. K. Furdyna, and L. P. Rokhinson, arXiv: : Unpolarized charge currents can switch magnetization in (Ga,Mn)As. N|F|N system

7 NTNU, November 2008 Introduction Call for a general theory!

8 NTNU, November 2008 Introduction Solution strategies 1) Calculate induced out-of-eqv. spin density = cumbersome in general. 2) Easy, compact method: Look at the reciprocal processes. Parametric pumping formula: X(t) Time varying parameter pumps current through the system I

9 NTNU, November 2008 Introduction Our main results: Used Onsager’s reciprocal theorem. Developed a general scattering theory. Applied formalism to a layered GaAs|(Ga,Mn)As|GaAs system. Find critical currents as low as 2.0 * 10 6 A/cm 2.

10 NTNU, November 2008 Outline 1.Introduction to Onsager reciprocal relations. 2.Derivation of formalism. 3.Application 1: System with no spin-orbit coupling. 4.Application 2: GaAs|(Ga,Mn)As|GaAs system.

11 NTNU, November 2008 Onsager Reciprocal Relations {q i |i=1,..,N}{X i |i=1,..,N}{dq i /dt |i=1,..,N} Quantities describing the system Rate of changeForce inducing rate of change

12 NTNU, November 2008 Onsager Reciprocal Relations General form of rate of change in linear response: = 1 if q i even under time reversal -1 if q i odd under time reversal Onsager’s Theorem:

13 NTNU, November 2008 Onsager Reciprocal Relations in N|F|N system Quantity Rate of change Force (X) Magnetic system: Spin system: Charge system: M i dM i /dt (X M ) i =-dF/dM i I s L(R) (X s L(R) ) i = N L - N R I (X c ) z =V L - V R Linear Response: Onsager’s Theorem gives: Normal metal Normal metal Ferro- magnet LR

14 NTNU, November 2008 Onsager Reciprocal Relations in N|F|N system Spin and charge pumped by precessing magnetization: Gives response coefficients: Gives magnetization dynamics: Used:

15 NTNU, November 2008 Summarized Scattering Theory of Charge & Spin-Current Induced Magnetization Dynamics Reference: K.M.D. Hals, A. Brataas, and Y. Tserkovnyak, arXiv:

16 NTNU, November 2008 Application 1: Systems with no spin-orbit coupling Scattering matrix given by: Spin-transfer-torque: Agrees with magnetoelectronic circuit theory. Assume spin accumulation in left reservoir, and that length of conductor is larger than the transverse spin coherence length.

17 NTNU, November 2008 Application 2: GaAs|(Ga,Mn)As|GaAs Model: GaAs (Ga,Mn)As z x y Main results: Charge current gives magnetization switching. Critical current density of the order 2.0*10 6 A/cm 2

18 NTNU, November 2008 Application 2: GaAs|(Ga,Mn)As|GaAs

19 NTNU, November 2008 Conclusions Developed a general theory that treats both STT and charge current torques. No SO coupling: Agrees with magnetoelectronic circuit theory. SO systems: Unpolarized charge-current torques give magnetization switching. Interface scattering gives a torque. Impurity scattering gives a bulk torque. Find magnetization switching for currents as low as 2.0* 10 6 A/cm 2 Reference: K.M.D. Hals, A. Brataas, and Y. Tserkovnyak, arXiv:

20 NTNU, November 2008 Parameter values GaAs (Ga,Mn)As z x y

21 NTNU, November 2008