PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
Matteo Negrini ISMD-2003, Krakow, September 5-11, 2003 Charmonium Production with Antiproton - Gas Jet Interactions at FNAL Matteo Negrini University of.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
The PANDA experiment at FAIR Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara representing the PANDA collaboration Charm 2007 Cornell University,
TIME-LIKE BARYON FORM FACTORS: EXPERIMENTAL SITUATION AND POSSIBILITIES FOR PEP-N Roberto Calabrese Dipartimento di Fisica and I.N.F.N. Ferrara, Italy.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
1May 27, 2002Klaus Peters - GSI Future - Physics with Antiprotons.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
The DIRC projects of the PANDA experiment at FAIR Klaus Föhl on behalf of RICH2007 Trieste 18 October 2007 Cherenkov Group rough-egdes version (isn’t it.
Working Group 5 Summary David Christian Fermilab.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi.
Hadron Physics QCD: are we satisfied with it? Antiproton’s potentiality The PANDA enterprise 1 Paola Gianotti.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
CHARMONIUM AT Agnes Lundborg QWG workshop Brookhaven June 2006 CHARMONIUM AT Agnes Lundborg Uppsala University Sweden.
The PANDA detector at the future FAIR laboratory Klaus Föhl on behalf of the PANDA collaboration 12 July 2007 SPIN-Praha-2007 and Edinburgh 8 August 2007.
Valery Dormenev Institute for Nuclear Problems, Minsk
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
Physics with the  PANDA Detector at GSI Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Riunione WG Fisica Adronica e dello Spin Roma, 7.
James Ritman FZ Juelich EU Design Kick Off Meeting General Introduction: Physics/Design requirements Four Tasks A)Photon detection and readout for DIRC.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
June 25, 2016 Mitglied der Helmholtz-Gemeinschaft The PANDA Experiment at FAIR XLIX International Winter Meeting on Nuclear Physics, Bormio 2011 | Tobias.
Physics perspectives at PANDA Hadron Structure and Charm Physics with Antiprotons Alberto Rotondi University of Pavia AntiProton ANnihilations at DArmstadt.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
The PANDA Detector at FAIR
The Fermilab E760/E835 experiments (JETFNAL)
Alexander Vasiliev on behalf of the PANDA Collaboration
Open and Hidden Charm at PANDA
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
Matteo Negrini Università degli Studi di Ferrara - INFN
Quarkonium production in ALICE
Open heavy flavor analysis with the ALICE experiment at LHC
Search for X - - Pentaquark in COMPASS
Presentation transcript:

PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert Heinsius – Universität Bochum

PANDA Physics Program  pp- and  p A-annihilation: beam momentum GeV/c Meson spectroscopy - charmonium states - open charm production - exotic matter -glueballs -hybrids -molecules - light mesons Baryon-Antibaryon production Charm in nuclei Hypernuclei physics Hadrons in nuclear medium Electromagnetic processes

Antiprotons at FAIR: PANDA HESR PANDA antiprotons GeV

Production of particles in  pp annihilation Example: glueballs and hybrids Production in  pp collisions All J PC allowed (including exotic, non q  q ) Formation in  pp collisions All J PC allowed for q  q can be generated p p _ G M p M H p _ p M H p _ p p _ p p _ H p p _ H G  ~ 1  b  ~ 100  pb

Why Antiprotons for Heavy Flavour Spectroscopy? high resolution spectroscopy with  p-beams in formation experiments: Δm given by ΔE beam (beam cooling) MeV3510 CBall ev./2 MeV 100 E CM e + e - interactions: – Only 1 -- states are directly formed – Other states only by secondary decays moderate mass resolution  pp reactions: –All charmonium states directly formed –very good mass resolution CB E E 835 ev./pb  c1 Crystal Ball, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000)

Example:  c1 and  c2 scans at Fermilab E835 22 Measured rate Beam Resonance cross section Crystal Ball: typical resolution ~ 10 MeV Fermilab: 240 keV PANDA: ~30 keV 11 M. Andreotti et al.,Nucl.Phys.B717:34-47,2005.  =0.88 ± 0.05 ± 0.03 MeV  =1.92±0.19 ± 0.01 MeV

E CM HESR – High Energy Storage Ring for  p Parameters of HESR Injection of  p at 3.7 GeV Slow synchrotron ( GeV/c) Storage ring for internal target operation Luminosity up to L~ 2x10 32 cm -2 s -1 Beam cooling stochastic:  p/p ~ 10  electron up to 8.9 GeV:  p/p <  Resonance scan Energy resolution ~50 keV Tune E CM to probe resonance Get precise mass and width

PANDA Targets Parameters of HESR Injection of  p at 3.7 GeV Slow synchrotron ( GeV/c) Storage ring for internal target operation Luminosity up to L~ 2x10 32 cm -2 s -1 Beam cooling stochastic:  p/p ~ 10  electron up to 8.9 GeV:  p/p <  Internal targets H/cm 2 Pellets Cluster jet Nuclei: Be, C, Si, Al

At present a group of more than 350 physicists in 15 countries U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen U Helsinki IKP Jülich U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk LAL Orsay U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw U Warsaw PANDA Collaboration

PANDA - Detector ~12 m Target Spectrometer Forward Spectrometer 2T superconducting solenoid + iron return yoke 2Tm dipole magnet Target p interactions/s 4  solid angle

PANDA – Vertex Detector Silicon Microvertex Detector vertex reconstruction for decaying particles: < 100  m

PANDA - Tracking Silicon Microvertex Detector Central Tracker Straw tubes TPC Forward Tracker GEM Drift Ch. momentum resolution  p/p ~ 1%

PANDA – Particle ID Muon Detectors: MDT Barrel DIRCEndcap DIRCForward RICH Forward TOF charged particle identification e, , , K, p, …

PANDA – Electromagnetic Calorimeter Barrel EMC Forward EMC few MeV to 15 GeV EMC TDR arXiv:

Physics – QCD bound states Charmonium –below threshold: h c –above threshold X(3872) predictions Y(4260) simulations Glueballs and Hybrids –PANDA simulation D-spectroscopy –D s0 * production at threshold

Charmonium spectroscopy  c J/  2  '  '' hep-ph/

Charmonium: Open questions Below D  D threshold –All predicted states detected, but –Lack of precise measurement of mass, width and branching ratios (i.e.  c,  c ', h c ) PANDA contributions?

Charmonium below D  D threshold: h c CLEO 13 events N=168 ± 40 PR D72, (2005) PRL 95, (2005) determine spin contribution of confinement potential from –precise mass measurement required two recent measurements –CLEO: e + e - →  (2S)→h c  0 h c →  c   c →hadrons –E835:  pp→h c, h c →  c   c →  PANDA –scan with high luminosity and precision –detect hadronic decay modes E835 m(h c )=(3524.4±0.6±0.4) MeV m(h c )=(3525.8±0.2±0.2) MeV

Charmonium: Open questions Above D  D threshold –only 4 vector states detected (not all unambiguously confirmed) –diagnostic of long range spin dependant  qq potential (e.g. 2P and 1D states) –appearance of several new resonances (unclear nature)

Charmonium above D  D threshold  (4040),  (4160),  (4415) –broad structures observed in R=  (e + e - → hadrons)/  (e + e - →  ) –lack unambiguous confirmation 1D states –only  (3770) observed 2P states –possibly Y(3940), Z(3990)? PANDA –perform search for undetected states –establish quantum numbers (high statistics)

New resonances above D  D threshold X(3872) (→J/      D 0  D 0  , J/  ) J PC =1 ++ preferred –Belle, Babar, CDFII, D0 X(3940) (→  D *  D,≠ D  D) J PC =0 -+ ? –Belle Y(3940) (→J/  ≠ D  D) J PC =J P+ –Belle, Babar Z(3930) (→D  D) J PC =2 ++ favoured –Belle Y(4260) (→J/  ) J PC =1 -- –Babar, CLEO, Belle Y(4350) (→  '     ) J PC =1 -- –Babar, Belle for most states J PC not well established nature unclear (exotic?) 9.4σ Phys. Rev. Lett. 91(2003) Mill. BB

X(3872) predictions for PANDA Chen, Ma, PRD77(2008) X(3872) as  c1 (2P) X(3872) as loosely bound state of D mesons  pp→X(3872)→ J/   +  - Figures for  X =2.3 MeV

PANDA simulation: Y(4260) J/  →e + e - Y(4260)→ J/   +  - Y(4260)→J/   Full simulation for various X,Y masses  pp→Y(4260)→ J/   +  - →J/  

Glueballs Detailed predictions of mass spectrum from quenched LatticeQCD. –Width of ground state  100 MeV –Several states predicted below 5 GeV/c 2, some exotic –Exotic heavy glueballs: m(0 +- ) = 4140(50)(200) MeV m(2 +- ) = 4740(70)(230) MeV Some predicted decay modes: , , J/ , J/ ... The detection of non-exotic glueballs is not trivial, as these states mix with the nearby q  q states with the same quantum numbers, thus modifying the expected decay pattern. C. Morningstar and M. Peardon, Phys. Rev. D 60, (1999) LatticeQCD prediction of glueballs

Hybrids Distinction easier if exotic: 0 --, 0 +-, 1 -+,... Search below 2.2 GeV/c 2 : e.g.  1 (1600) (E852, VES, COMPASS) but: high density of mesons qqqq 1 - Gluon1 + Gluon exotic

Hybrids Distinction easier if exotic: 0 --, 0 +-, 1 -+,... Search below 2.2 GeV/c 2 : e.g.  1 (1600) (E852, VES, COMPASS) but: high density of mesons Charmonium region: less populated ground state predicted at ~4.3 GeV/c 2 Exotic: J PC =1 -+ Could be narrow: 5-50 MeV

Charmonium hybrid states charmonium final state open charm final state    c1  ++   1 --  h c0  0 +-   c  h c   c  h c   c2 2 -+

Charmonium hybrid states: simulation charmonium final state  c1 PANDA simulation Efficiency

By making an energy scan around threshold → counting signal events, determine the excitation function and extract the width and mass threshold D s *D s0 * The width of D s0 *(2317) can be measured in the reaction pp  D s D s0 *(2317) 29 Determination of mass and width of D sJ *(2xxx)

Production rates (1-2 fb -1 ) low multiplicity events  trigger on defined final states

Baryon spectroscopy

Electromagnetic processes Time like electromagnetic form factors –  pp  e + e - –wide kinematic range –separate measurement of G M and G E Hard exclusive processes Drell-Yan –  pp  e + e -,  pp   +  - –transverse quark distributions BG suppression for FF (PID and kinematic fit, full simulation)  +  - ≥ 10 6  +  - ≥ 10 8 less than 1% feed through

Summary Production of mesons, hybrids, glueballs in formation –all q  q quantum numbers –resonance scan technique precise determination of mass and width ~30 keV –2.25 GeV/c² < m < 5.47/c² GeV/c² Production of baryons, mesons, hybrids, glueballs with recoiling particles –all quantum numbers –antiproton momentum from 1.5 to 15 GeV/c Charmonium below and above D  D threshold Baryon spectroscopy Electromagnetic processes