Harry Nelson UCSB Orsay October 24, 2005 The Latest from CDMS-II on WIMPs Second Results from Soudan! astro-ph/0509259 astro-ph/0509269 available September.

Slides:



Advertisements
Similar presentations
Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Advertisements

EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Background Reduction in Cryogenic Detectors Dan Bauer, Fermilab LRT2004, Sudbury, December 13, 2004 Detector Shielding Veto U/Th/K/Rn ,n U/Th/K/Rn.
Background issues for the Cryogenic Dark Matter Search Laura Baudis Stanford University.
Listening for the Dark Harry Nelson UCSB.
Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
CDMS (Cryogenic Dark Matter Search) Long Duong (University of Minnesota) Trinity School Seminar Jan 14, 2004 Introductory remarks Outline of physics concepts.
SuperCDMS at SNOLAB Wolfgang Rau, Queen’s University for the
The Search for Dark Matter The Cryogenic Dark Matter Search (CDMS)
Searches for Dark Matter (the Quest) Harry Nelson UCSB 2003 SLAC Summer Insitute Aug
Proportional Light in a Dual Phase Xenon Chamber
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
W. RauSNOLAB workshop 2009 S u p e r C D M S Wolfgang Rau Queen’s University CDMS Technology Analysis and Results SuperCDMS Detector R&D Underground TF.
The crystal is made of either silicon or germanium. This is the same material from which transistors and solar cells are made. The sensors employ state-of-the-art.
Status of the Cryogenic Dark Matter Search (CDMS) Experiment Bruno Serfass University of California, Berkeley for the CDMS Collaboration Rencontres de.
Direct Detection of Dark Matter: CDMS and COUPP
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Direct Dark Matter Searches
Blas Cabrera - Stanford UniversitySuperCDMSPage 1 CDMS-II Completion and SuperCDMS Collaboration Meeting UC Santa Barbara February 12, 2005 Blas Cabrera.
Michael B. Crisler Fermi National Accelerator Laboratory 03 June 2003 The C ryogenic D ark M atter S earch.
Monte Carlo Simulations of a Neutron Detector Laura Boon Case Western Reserve University, Department of Physics Advisor: Daniel Akerib, Department of Physics.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Recent Results from CDMS Experiment Caltech – 01/06/2004 Vuk Mandic UC Berkeley.
CDMS IIUCSB Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss) ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
Search for Cosmic Dark Matter at CDMS Laura Baudis Stanford University SLAC Topical Conference, August 16, 02.
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France
Professor Priscilla Cushman University of Minnesota ICHEP Beijing, China August 16-22, 2004 First Results from the Cryogenic Dark Matter Search at the.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Dan Akerib Case Western Reserve University 7 July 2001 Snowmass, Colorado E6.2 Working Group The CDMS I & II Experiments: Challenges Met, Challenges Faced.
A Lightning Review of Dark Matter R.L. Cooper
The crystal is made of either silicon or germanium. This is the same material from which transistors and solar cells are made. The sensors employ state-of-the-art.
Dan Bauer - CDMS Project ManagerAll experimenters meeting - April 23, 2007 Cryogenic Dark Matter Search (CDMS) Progress at Soudan since last summer Successful.
Searching for Lightly Ionizing Particles. Searches for Lightly Ionizing Particles The low energy threshold allows us to search for energetic Lightly Ionizing.
Results from the Cryogenic Dark Matter Search Using a  2 Analysis Joel Sander December 2007.
Gaitskell CDMS II Status + CDMS I / III / CryoArray Direct Detection of SUSY Cold Dark Matter Rick Gaitskell Brown University, Department of Physics see.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Gaitskell CDMS I + II + CryoArray Status Direct Detection of SUSY Cold Dark Matter Rick Gaitskell Brown University, Department of Physics see information.
Results from the Full Analysis of CDMS Data Runs Richard Schnee Case Western Reserve University.
Blas Cabrera - Stanford UniversitySLAC Experimental SeminarPage 1 The Search for Dark Matter in the form of WIMPs: CDMS (Cryogenic Dark Matter Search)
DARK MATTER SEARCH Carter Hall, University of Maryland.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
Low Mass WIMP Search with the CDMS Low Ionization Threshold Experiment Wolfgang Rau Queen’s University Kingston.
Recent Results & Current Status of C RYOGENIC D ARK M ATTER S EARCH Rupak Mahapatra Univ. of California Santa Barbara APS-DPF JPS 2006, Hawaai.
Development of a Underground High-Energy Neutron Detector Joel Sander - UCSB.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
The Cryogenic Dark Matter Search “From our home on the Earth, we look out into the distances and strive to imagine the sort of world into which we are.
SuperCDMS and CUTE at SNOLAB
SuperCDMS and CUTE at SNOLAB Wolfgang Rau Queen’s University for the
From Edelweiss I to Edelweiss II
A Bubble Chamber for Dark Matter Detection
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
SuperCDMS at SNOLAB Wolfgang Rau Queen’s University for the
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Soudan Installation: Fermilab
Status of Neutron flux Analysis in KIMS experiment
New Results and Status of the Cryogenic Dark Matter Search
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
- - Interpreting DAMA with Inelastic Dark Matter:
Past , Present and Future
Presentation transcript:

Harry Nelson UCSB Orsay October 24, 2005 The Latest from CDMS-II on WIMPs Second Results from Soudan! astro-ph/ astro-ph/ available September 12&13, 2005

CDMSHNN 10/24/05 Orsay Seminar 2 CDMS Collaboration Stanford University P.L. Brink, B. Cabrera, J.P. Castle, C.L. Chang, J. CooleyM. Kurylowicz, L. Novak, R. W. Ogburn, M. Pyle, T. Saab, A. Tomada University of California, Berkeley J. Alvaro-Dean, M.S. Armel, M. Daal, J. Fillipini, A. Lu, V. Mandic, P.Meunier, N. Mirabolfathi, M.C.Perillo Isaac, W. Rau, B. Sadoulet, D.N.Seitz, B. Serfass, G. Smith, A. Spadafora, K. Sundqvist University of California, Santa Barbara R. Bunker, S. Burke, D.O. Caldwell, D. Callahan, R.Ferril, D. Hale, S. Kyre, R. Mahapatra, J.May, H. Nelson, R. Nelson, J. Sander, C.Savage, S.Yellin University of Florida L. Baudis, S. Leclerq University of Minnesota J. Beaty, P. Cushman, L. Duong, A. Reisetter Brown University M.J. Attisha, R.J. Gaitskell, J-P. F. Thompson Case Western Reserve University D.S. Akerib, P. Brusov, C. Bailey, M.R. Dragowsky, D.D.Driscoll, S.Kamat, A.G. Manalaysay, T.A. Perera, R.W.Schnee, G.Wang University of Colorado at Denver M. E. Huber Fermi National Accelerator Laboratory D.A. Bauer, R. Choate, M.B. Crisler, R. Dixon, M. Haldeman, D. Holmgren, B. Johnson, W.Johnson, M. Kozlovsky, D. Kubik, L. Kula, B. Lambin, B. Merkel, S. Morrison, S. Orr, E.Ramberg, R.L. Schmitt, J. Williams, J. Yoo Lawrence Berkeley National Laboratory J.H Emes, R. McDonald, R.R. Ross, A. Smith Santa Clara University B.A. Young Cryogenic Dark Matter Search

CDMSHNN 10/24/05 Orsay Seminar 3 Plan Massive Dark Matter Direct Detection CDMS Future

CDMSHNN 10/24/05 Orsay Seminar 4 `We Declare a New Order’ (Joel Primack) Metals (us)  0.01% Visible Baryons  0.5% Dark Baryons  5% Cold Dark Matter (WIMPs?)  25% Cosmological Constant   70%

CDMSHNN 10/24/05 Orsay Seminar 5 Candidates

CDMSHNN 10/24/05 Orsay Seminar 6 Coincidence or Clue… `WIMP’ ’

CDMSHNN 10/24/05 Orsay Seminar 7 00 Neutralino glue H 0,A 0 quarks c,b,t Same for n, p Enhancement from coherence  (# nucleons) 2 `spin independent’

CDMSHNN 10/24/05 Orsay Seminar 8 Experiment CDMS (shallow) DAMA (old!) Theory SUSY, various constraints including Big Bang Gaitskell/Mandic Our Hunting Ground (old, but simple) Weakly Interacting Massive Particle

CDMSHNN 10/24/05 Orsay Seminar cm 2 Large tan , light A 0 models (soon to be probed at Tevatron, and CDMS) Inteference Minimal Supersymmetric Standard Model Scan

CDMSHNN 10/24/05 Orsay Seminar 10 Constrained SUSY Standard Model Scan cm 2 Ellis, Olive, et al. 2005

CDMSHNN 10/24/05 Orsay Seminar 11 Galactic Dark Matter R v v is the speed (tangential) R is the distance from center

CDMSHNN 10/24/05 Orsay Seminar 12 Our home galaxy (Milky Way)?                           Uncertainty: `standard’ ~ 1/3 GeV/cm 3, 220 km/s Gaussian velocity distrib. mainly for comparison Honma & Kan-ya, 1998 

CDMSHNN 10/24/05 Orsay Seminar 13 v/c =   0.7  Modern Chadwick Experiment 00 Massive: M  c 2  100 GeV `Weak Scale’ Germanium, A  73, mc 2  68 GeV; Silicon: A  28, mc 2  26 GeV (better for small M  c 2 ) v/c =   0.7  E R  ½ m Ge(Si) c 2  2  ½ 68 (26) GeV  ½   20 (7) keV  x-ray energy ! Easy! “Direct Detection”

CDMSHNN 10/24/05 Orsay Seminar 14 Catalog of Recoil Experiments Rick Gaitskell

CDMSHNN 10/24/05 Orsay Seminar 15 00 Nucleus Recoils Signal Shape ErEr Silicon, Sulphur Germanium Iodine, Xenon A2A2 M WIMP =100 GeV   cm 2 /nucleon Slope: Gaussian of WIMPs in Galaxy Diffraction

CDMSHNN 10/24/05 Orsay Seminar 16  0 (calibrate: neutron) v/c  7  Nucleus Recoils dense energy deposition efficiency low distinct energy scale Direct Detection: Signal and Main Background Signal ErEr  v/c  0.3 Electron Recoils Background Sparse Energy Deposition ErEr Differences the Basis of Particle ID

CDMSHNN 10/24/05 Orsay Seminar 17 H phonons ionization Q L scintillation CDMS, EDELWEISS CRESST II, ROSEBUD ZEPLIN II, III, MAX, XMAS, XENON NAIAD, ZEPLIN I, DAMA IGEX, DRIFTI, II CRESST I, PICASSO, COUPP Tim Sumner

CDMSHNN 10/24/05 Orsay Seminar 18 Nuclear recoil bad at making ionization Germanium 00 Holes e-e-  more ionization! Both deposit, say, 20 keV Sound !

CDMSHNN 10/24/05 Orsay Seminar 19 Our Detectors `Phonon sensor (4)’ (TES) Ionization Electrodes (2) x-y-z imaging: from sharing, timing Z-coordinate, Ionization, Phonons ZIP Operate at Kelvin

CDMSHNN 10/24/05 Orsay Seminar 20 The Phonon Sensor Al quasiparticle trap Al Collector W Transition-Edge Sensor (TES) Ge or Si quasiparticle diffusion phonons Cooper Pair superconducting normal T (mK) T c ~ 80mK R TES (  ) ~ 10mK R. Schnee

CDMSHNN 10/24/05 Orsay Seminar 21 Pulses Charge (2) Phonon (4) Time (  s) KeV  1 mm/  s

CDMSHNN 10/24/05 Orsay Seminar 22 Separation of the types of recoils Sound Neutrons cause nuclear recoils too! Another background…

CDMSHNN 10/24/05 Orsay Seminar 23 Deep Facility Soudan Mine Hosts: State of Minn., U Minn., Fermilab 690 meters underground 2090 meters water equivalent

CDMSHNN 10/24/05 Orsay Seminar 24 Background Neutrons from Cosmic Ray Muons Limited our earlier results…moved to a deep mine

CDMSHNN 10/24/05 Orsay Seminar 25 Down deep in the Soudan mine HVAC Mechanical RF-shielded Clean room Shield Fridge Front-end Electronics Mezzanine Detector Prep DAQ/Electronics Clean Benches Icebox Pumps, Cryogenics Soudan II MINOS connecting tunnel

CDMSHNN 10/24/05 Orsay Seminar 26 Outside In plastic scintillators outer polyethylene lead ancient lead inner polyethylene

CDMSHNN 10/24/05 Orsay Seminar 27 A Cold Heart 10 cm Two `towers’ Results from first… 6 detectors… ZIP 1 (Ge) ZIP 2 (Ge) ZIP 3 (Ge) ZIP 4 (Si) ZIP 5 (Ge) ZIP 6 (Si) 4 K 0.6 K 0.06 K 0.04 K SQUID cards FET cards 14 C Tower 1: 4 Germanium (0.25 kg each), 2 Silicon (0.1 kg each) poorer resolution

CDMSHNN 10/24/05 Orsay Seminar 28 Detectors Veto Scintillator Polyethylen e Lead Cable s Cry o Radioactiv e Source

CDMSHNN 10/24/05 Orsay Seminar 29  Calibration ( 133 Barium) (e  recoils) Ionization Phonons Energy, KeV L. Baudis

CDMSHNN 10/24/05 Orsay Seminar 30 Better Source, Calibration ( 133 Ba) Ionization Phonons 275 keV ,  =2.5 keV 384  =8 keV

CDMSHNN 10/24/05 Orsay Seminar 31 n Calib. ( 252 Californium) (nuclear recoils) Reconstructed recoil energy, KeV S. Kamat

CDMSHNN 10/24/05 Orsay Seminar 32 First Year of Running CDMS II at Soudan Oct Jan “Tower 1”  53 livedays, 1 kg Ge, 0.2 kg Si Calibration runs Nearly 85% livetime for last six weeks Tower 1 Mar.-Aug “The Two Towers”  74 livedays 1.5 kg of Ge, 0.6 kg of Si  More Barium Calibration extra calibration runs Towers 1 & 2 Livetime (days) Date

CDMSHNN 10/24/05 Orsay Seminar 33 Mask WIMP Search Data oversized nuclear recoil band + Single, Qinner, veto-anticoinc Define cuts on calibration data (E_threshold) Test on Barium and multiple detector events e.g. Decide the trade-off between neutron efficiency and surface beta rejection and estimate leakages Freeze cuts and calculate nuclear recoil band acceptance Unblind Apply cuts to the unmasked WIMP search data Calculate Expected Backgrounds Compare with previous blind tests to estimate systematic uncertainties CDMS Blind Analysis Technique

CDMSHNN 10/24/05 Orsay Seminar 34 ZIP 1 (Ge) ZIP 2 (Ge) ZIP 3 (Ge) ZIP 4 (Si) ZIP 5 (Ge) ZIP 6 (Si) 4 K 0.6 K 0.06 K 0.04 K SQUID cards FET cards 14 C Reject Multiple Interactions 00 WIMPs don’t scatter twice n,  Backgrounds often do Surface electrons

CDMSHNN 10/24/05 Orsay Seminar 35 The Two Tower Data 15 sig. region Z2/Z3/Z5/Z9/Z11 Ionization Yield Recoil Energy (keV) A. Reisetter Surface Electrons Two Tower Run: much focus on rejection of surface events

CDMSHNN 10/24/05 Orsay Seminar Pb peak in adjacent detectors Sometimes a signal in only 1 detector... `single’ Dominantly (2/3) 210 Pb on detector surfaces Balance unknown…

CDMSHNN 10/24/05 Orsay Seminar 37 External e  : surface events, ionization missed Germanium Electrode Implants E  External e   decay contamination, escaping compton recoils z `ZIP’ : `reconstruct’ z with start time, risetime… pulseheight share Ionization not collected

CDMSHNN 10/24/05 Orsay Seminar 38 C. Chang

CDMSHNN 10/24/05 Orsay Seminar 39 00 Primary Phonons `High Energy,’ `Rayleigh Scatter’ so they diffuse + energy downshift Lower Energy Phonons Have Longer Pathlength, Diffuse More Promptly Eventually energy low, pathlength long, `phonons go ballistic’ Phonon Sensors External e   decay contamination, escaping compton recoils Sensor Induces Phonon Energy Downshift Distinct Sensor Sharing

CDMSHNN 10/24/05 Orsay Seminar 40 Pulse Timing (phonon start time) 10-40% G. Wang Timing quantities used to suppress external electrons Ionization Pulse gives start time

CDMSHNN 10/24/05 Orsay Seminar Ionization Yield Recoil Energy (keV) Z2/Z3/Z5/Z9/Z11 23x our WIMP-search background Barium, Neutron Calibration Samples Barium (  ) 252 Cf (n) Enabled by vastly improved DAQ!

CDMSHNN 10/24/05 Orsay Seminar 42 Mean has most of the info… Nuclea r Recoil s Surfac e Events

CDMSHNN 10/24/05 Orsay Seminar 43 Recoil Energy (keV) Ge cut efficiency Used for Ge (cut determined blind) Surfac e Events Nuclea r Recoil s

CDMSHNN 10/24/05 Orsay Seminar 44 Third Variable... make a  2 Surfac e Events Nuclea r Recoil s

CDMSHNN 10/24/05 Orsay Seminar 45 Surfac e Events Nuclea r Recoil s R. Mahapatra J. Sander Used for Si (cut determined blind)

CDMSHNN 10/24/05 Orsay Seminar 46 Before/After Timing Cut 15 sig. region Z2/Z3/Z5/Z9/Z11 Ionization Yield Recoil Energy (keV) A. Reisetter Surface Electrons 1 candidate (barely) 1 near-miss 0.37  0.20 (sys.)  0.15 (stat.) misid’ed electron recoils from sidebands and pre-cut signal region 0.13  0.05(stat) from barium calibration Can cut harder to suppress electron leakage ~0.05 recoils from neutrons

CDMSHNN 10/24/05 Orsay Seminar 47 Small Circles: prior to surface rejection Colored: passing surface rejection Star: one candidate Expected Background (7-100 keV recoil energy) Beta 0.5±0.2±0.2 for Ge and 1.2±0.6±0.2 for Si Neutron 0.06 for Ge and 0.05 for Si

CDMSHNN 10/24/05 Orsay Seminar keV: not included before opening the box for Ge (but was included before opening for Si) Only included for combined Ge limit.

CDMSHNN 10/24/05 Orsay Seminar 49 New Limits (Spin Independent) Silicon: low mass 90% CL About twice more sensitive than 1-tower

CDMSHNN 10/24/05 Orsay Seminar 50 00 Neutralino Z0Z0 Axial vector interaction gives spin-dependent scattering… neutron or proton

CDMSHNN 10/24/05 Orsay Seminar 51 New Limits (Spin Dependent) 8% 73 Ge 5% 29 Si  unpaired neutron Ge (2 nuclear models) Si Super-K Solar Zeplin-I Picasso DAMA CRESST-I NAIAD Majorana neutron proton

CDMSHNN 10/24/05 Orsay Seminar keV x-ray, L- shell Capture 71 Ge SUF Run 21 Germanium – Low Threshold, Shallow Ge Si R. Bunker

CDMSHNN 10/24/05 Orsay Seminar 53 Improvements  Cryogenics, backgrounds, DAQ  Currently commissioning 30 detectors in 5 towers of 6  4.75 kg of Ge, 1.1 kg of Si to run through 2007  Improve sensitivity x10 The Near Future Installed 3 additional towers in November CDMS- Soudan CDMS -projected Edelweiss ZEPLIN-1 Better Radon Suppression

CDMSHNN 10/24/05 Orsay Seminar 54 H. Nelson Background Subtracted Expected exposure for 1 year running 5x improvement via improved discrimination 2.5x improvement via subtraction ignoring systematics Expectations based on SUF backgrounds 1-tower run Combined runs X4 better SUF

CDMSHNN 10/24/05 Orsay Seminar 55 Sensitivity Expectations

CDMSHNN 10/24/05 Orsay Seminar 56 Elements leading to increased sensitivity Thicker Detectors  Less surface/volume, factor of 2.5 Better Analysis Rejection  Better Monte Carlo, reconstruction, factor of 4 Cleaner Detectors  210 Pb … Radon Daughter, factor of 10 Move to SNOLAB to suppress neutrons

CDMSHNN 10/24/05 Orsay Seminar 57 SuperCDMS Roadmap

CDMSHNN 10/24/05 Orsay Seminar 58 Projected Sensitivies

CDMSHNN 10/24/05 Orsay Seminar 59 CDMS Collaboration(March 2002)

CDMSHNN 10/24/05 Orsay Seminar 60 DAMA – 100 kg of NaI Iodine, A=127 E obs (KeV ee )  0.09 E recoil (KeV) Sodium, A=23 E obs (KeV ee )  0.25 E recoil (KeV) E recoil  Light NaI PMT Copper Lead Poly

CDMSHNN 10/24/05 Orsay Seminar 61 through 2000 … 4  DAMA Background and Signal through 2003 … 6.3  Bernabei et al., astro-ph/ Energy Spectrum Bkgd  1 cpd/kg/keV 2-6 KeV 8-24 KeV Na(23) KeV I(127)   cpd/kg/keV

CDMSHNN 10/24/05 Orsay Seminar 62 Rate of Main Background Rate about 10 3 / (kg-day) !!! Shield… but that radioactive too Strategies: DAMA… huge target mass, look for astrophysical modulation CDMS, Xenon… `small’ target mass, distinguish electron from nucl. recoil

CDMSHNN 10/24/05 Orsay Seminar 63 Timing rejects surface/external e  ee Nuclear Recoils External e  Phonon Delay ( µ s)

CDMSHNN 10/24/05 Orsay Seminar 64 CDMS Technique: Phonons v. Ionization Shutt et al., 1992 Nuclear recoils (induced by a neutron source) Electron recoils (induced by a  source) Slope really 1! Ionization Phonons =1 (bkgd)  1/3 (sig) E gap = 3/4 eV w = 3 eV (Ge)