ECFA Durham, September 20041 Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,

Slides:



Advertisements
Similar presentations
Status on CMOS Sensors: 2005 outcome A. Besson, on behalf of IPHC/IReS Strasbourg DAPNIA Saclay (M8, M15) LPSC Grenoble (ADC) LPC Clermont (ADC) Univ.
Advertisements

Wojciech Dulinski BNL/IReS/LEPSI STAR Video Conference, MIMOSA9 tracker test chip submission Goals: design optimization.
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
STAR Microvertex Upgrade Meeting, Strasbourg, April Status of sensors from the engineering run AMS-035 OPTO Wojciech.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Irfu saclay Achievements & Perspectives of MIMOSA Sensors (MAPS) for Vertexing Applications Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg) & IRFU.
Wojciech Dulinski Mimosa-18 (High Resolution Tracker) IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France Mini.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Wieman: 1 LBNL Status and R&D plans for the STAR Microvertex Detector Development 22-Nov-03 LBNL Fred Bieser, Robin Gareus (Heidelberg), Leo Greiner, Howard.
Fine Pixel CCD Option for the ILC Vertex Detector
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments On behalf of IPHC-Strasbourg group (CNRS & Université.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
A Silicon vertex tracker prototype for CBM Material for the FP6 Design application.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Monolithic Pixel R&D at LBNL M Battaglia UC Berkeley - LBNL Universite' Claude Bernard – IPN Lyon Monolithic Pixel Meeting CERN, November 25, 2008 An R&D.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
M.Winter, on behalf of IPHC (ex-IReS) Strasbourg
INFN Pavia and University of Bergamo
Status of the UK active pixel collaboration
CMOS pixel sensors & PLUME operation principles
First Testbeam results
Radiation tolerance of MAPS
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
MAPS with advanced on-pixel processing
Mimosa18 on PCB (from the chip side)
Vertex Detector Overview Prototypes R&D Plans Summary.
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
The LHCb VErtex LOcator
R&D of CMOS pixel Shandong University
Presentation transcript:

ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean, F. Guilloux, S. Heini, A. Himmi, Ch. Hu, K.Jaaskelainen, M. Pellicioli, H. Souffi-Kebbati, I. Valin, M. Winter, G. Claus, C. Colledani, G. Deptuch, W. Dulinski, M. Szelezliak (M6/M8 DAPNIA: Y. Degerli, E. Delagnes, N. Fourches, P. Lutz, F.Orsini) Fabrication technology Parameter optimization (pitch, T, diodes, etc.) Signal treatment and read-out speed Thinning Radiation tolerance

ECFA Durham, September 2004A.Besson2 MIMOSA 9 (1) Main features: –Techno opto. –Self Bias / Standard –Pitch 20/30/40  m –Small/large diodes (3/6  m) –With/without epi. 6 x 6  m 3.4 x 4.3  m 6 x 6  m 3T, 40  m 32 x 32 SB, 30  m 32 x 32 SB, 20  m 64 x 64 SB, 40  m 32 x mm 0.96 mm 5 x 5  m Explore the different parameters

ECFA Durham, September 2004A.Besson3 MIMOSA 9 (2) Beam CERN-SPS (120 GeV/c  - ) Self-Bias, Pitch = 20  m, diode 6 x 6  m 2 MPV ~ 24 Charge (1 pixel); MPV ~ 325 (9 pixels); MPV ~ 850 (25 pixels); MPV ~870

ECFA Durham, September 2004A.Besson4 MIMOSA 9 (3) F irst comparisons: –SB with 20/30  m pitch : eff ≥ 99.8% –Resolution ~ 1.5  20  m pitch –Analysis in progress:  Temperature  Chip without epi.  Hit selection optimization Sp. Resolution; SB, diode 3.4 x 4.3  m 2 StandardSelf Bias PITCH (  m) Diode size (  m) 3.4 x 4.36 x 63.4 x 4.36 x 63.4 x 4.35 x 53.4 x 4.36 x 6 S/N (Seed) Efficiency90.35± ± ± ± ± ± ± ±0.23 Noise (e-) vs Diode surface  m 2

ECFA Durham, September 2004A.Besson5 Fast read-out architecture Different developments based on Mimosa 6 –VX DET layer 1-2:  Fast, column // readout, with hit selection –VX DET layer 3-4-5:  Multiple scans of the whole detector within train (r.o. ~200  s).  Then read the samples between trains  Integrate capacitors in each pixel (M7 and M8) Mimosa 7 –Features  photoFET.  25  m pitch, No epi., 0.35  m, 64x16 readout in // with CDS –Status  Being tested  Beam test in Oct. Mimosa 8 (with DAPNIA) –Features  25  m pitch, 8  m epi., 0.25  m, 128x32 readout in // with CDS  Signal discrimination –Status  Being tested

ECFA Durham, September 2004A.Besson6 Thinning Mimosa 5 thinned down to epi. layer –Beam CERN –S/N M5-B standard M5-B thinned down

ECFA Durham, September 2004A.Besson7 MIMOSTAR STAR exp. upgrade: 1 st proto sent for fabrication –Extension of the Vertex Detector (2 layers) –Running conditions  T amb. (higher leakage current). Readout time ~ 4ms –Features  Opto technology to reduce noise  TSMC 0.25 techno  Based on M5  Pitch = 30x30  m x128 pixels  Surface: ~ 4 x 5 mm 2  Subdivision in 10 groups of columns  Pure analogic output. 10x10MHz output –Status  Expected back from fab. end Oct.

ECFA Durham, September 2004A.Besson8 Radiation hardness SUC 1: –Chip with 8  pixels design. 30  m pitch  Goal: study charge loss after irraditaion (X-ray) –Irradiation:  X-ray: 500kRad and 1MRad  Calibration with 55 Fe  Measure leakage different T –Being analysed  Charge loss  for some pixel designs  Leakage current Next irradiation + beam test –M9 (X, n) –M5 (n)  Seems to stand 1 MRad

ECFA Durham, September 2004A.Besson9 Conclusion and outlook Geometry –Efficiency and resolution ok from 20 to 40  m New techno opto. AMS 0.35  m –Epi. Layer may change Chip read-out architecture –2 research lines  layer 1-2 : r.o. speed  Layer : storage capacitors –2 proto being tested –Promising results Radiation hardness –Studies in progress –Evidence  stand > 0.5 MRad. Up to 1MRad. –M9 (n,X), M5 (n)

ECFA Durham, September 2004A.Besson10 Mimosa prototypes

ECFA Durham, September 2004A.Besson11

ECFA Durham, September 2004A.Besson12

ECFA Durham, September 2004A.Besson13

ECFA Durham, September 2004A.Besson14

ECFA Durham, September 2004A.Besson15 Mimosa 9 (preliminary)

ECFA Durham, September 2004A.Besson16 Beam tests: résumé. 3 sessions (mai, juillet, aout). Chips testés: –M5B: 202, 205, 306. –M5 15  m: “nGD” –M9: 1,2 (avec epi.) et 7(sans epi.)  150k evts/run. 3/4 pts de Temp. Remarques –Inversion du trigger pour M5 15  m –Veto apres le reset pour M9. 2  10 frames.  ~ 50% d’efficacité… A faire: –Calibration M5 nGD. –M9 sans epi. –M5 et M9 irradiés –M7

ECFA Durham, September 2004A.Besson17