Orbitally phase coherent spintronics

Slides:



Advertisements
Similar presentations
Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
Advertisements

Spintronics: How spin can act on charge carriers and vice versa
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Quantum Coherent Nanoelectromechanics Robert Shekhter Leonid Gorelik and Mats Jonson University of Gothenburg / Heriot-Watt University / Chalmers Univ.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Huckel I-V 3.0: A Self-consistent Model for Molecular Transport with Improved Electrostatics Ferdows Zahid School of Electrical and Computer Engineering.
Controlling ac transport in carbon- based Fabry-Perot devices Claudia Gomes da Rocha University of Jyvaskyla, Finland Dresden University of Technology,
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Montserrat García del Muro, Miroslavna Kovylina, Xavier Batlle and
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Multi-terminal spin dependent transport in carbon nanotubes Chéryl FEUILLET-PALMA Laboratoire Pierre Aigrain Ecole Normale Supérieure, Paris France Co-workers.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
S. Nanot 1, B. Lassagne 1, B. Raquet 1, J.M. Broto 1 and W. Escoffier 1 J.P. Cleuziou 2, M. Monthioux 2, T. Ondarçuhu 2 R. Avrilier 3, S. Roche 3 Abstract.
Introduction to the Kondo Effect in Mesoscopic Systems.
Theory of the Quantum Mirage*
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Brillouin Light Scattering Studies of Magnetic Multilayers Cyrus Reed, Milton From Department of Physics and Astronomy, Western Washington University What.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Ballistic and quantum transports in carbon nanotubes.
Five-Lecture Course on the Basic Physics of Nanoelectromechanical Devices Lecture 1: Introduction to nanoelectromechanical systems (NEMS) Lecture 2: Electronics.
ITR/AP: Simulations of Open Quantum Systems with Application to Molecular Electronics Christopher Roland and Celeste Sagui Department of Physics, NC State.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Electron coherence in the presence of magnetic impurities
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Caltech collaboration for DNA-organized Nanoelectronics The Caltech DNA- nanoelectronics team.
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.
Carbon Nanotube Intramolecular Junctions. Nanotubes A graphene sheet with a hexagonal lattice…
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
„To bunch or not to bunch” Tóvári Endre Journal Club márc. 8. Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Confined Carriers DRAGICA VASILESKA PROFESSOR ARIZONA STATE UNIVERSITY.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Nonlocal quantum coherence between normal probes placed on a superconductor is predicted to occur through two microscopic processes. In crossed Andreev.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Graphene bipolar heterojunctions SD LG V BG C BG C LG V LG V SD -Density in GLs can be n or p type -Density in LGR can be n’ or p’ type We expect two Dirac.
Introduction to Spintronics
Electrical control over single hole spins in nanowire quantum dots
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
Mesoscopic physics and nanotechnology
S. E. Thompson EEL Logic Devices Field Effect Devices –Si MOSFET –CNT-FET Coulomb Blockade Devices –Single Electron Devices Spintronics Resonant.
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Single-molecule transistors: many-body physics and possible applications Douglas Natelson, Rice University, DMR (a) Transistors are semiconductor.
STM Conference Talk: Dirk Sander
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Lecture 7 DFT Applications
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance.
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
Compact Modeling of MTJs for use in STT-MRAM
Michael Fuhrer Director, FLEET Monash University
Information Storage and Spintronics 18
Presentation transcript:

Orbitally phase coherent spintronics C. Feuillet-Palma Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris Experiment : T. Delattre, T. Kontos, J.-M. Berroir, B. Plaçais, G. Fève,D.C. Glattli. Theory: A. Cottet Acknowledgment : M. Aprili, A. Thiaville, S. Rohart, H. Jaffrès, G.E.W. Bauer, A. Fert.

Molecular electronics Hybrid circuit necessarily formed for study of electron transport in molecule Electronic transport should be sensitive to molecular properties Quantum effects in electronic transport

Hybrid circuit & Spintronics N. Roch et al. Nature 453, 347 (2008) Pasupathy et al. Science, 306 (2004) Hauptmann et al. Nature Physics 4 (2008) T. Delattre et al. Nature Physics 5, 208 (2009) Confinement : localized eletronic states Spintronics of localized electronic states

Magnetic tunnel junction… EF N1h N2i R N1h E N2i Spin signal MG eVSD EF F1 I F2 H HcR HcL HcR HcL Jullière’s model VSD Hypothesis: the electron’s phase is not considered!

…with a single wall carbon nanotube (SWNT) : Simplest spin dependent CNT device VSD CG VG Field Effect Transistor (FET) geometry analog to optical polarizer\analyzer experiment: Gate capacitively coupled to NT. Study as a function of VSD and VG.

Spin FET behavior in SWNTs MG Both signs of TMR can be observed. Oscillations of TMR as a function of gate voltage. Spin dependent resonant tunneling mechanism (quantitative theory A. Cottet et al.) How is this picture modified in multi-terminal devices ? S. Sahoo et al., Nature Phys., 1, 99 (2005), H.T. Man et al., Phys. Rev. B R 73, 241401 (2006), A. Cottet et al. Semicond. Sci. Tech. 21, S78 (2006), A. Cottet and M.-S. Choi PRB ‘06

Quantum coherent transport vs spintronics « Theorist’s blob » experiment C.P. Umbach et al., APL, 50, 1289 (1987) F.D. Jedema et al., Nature, 416, 713 (2002) See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985) « Non-local » spin injection Coherent non-local effects in disordered mesoscopic devices and non-local spin dependent voltages in disordered incoherent conductors

Quantum coherent transport vs spintronics « Non-local » spin injection F.D. Jedema et al., Nature, 416, 713 (2002) See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985) Hysteretic switching of non-local voltage as a function of magnetic field

Resistor network model for semiclassical spin transport V V3 V4 R1 R4 R12 R23 R34 r1 r4 N F Model conventionally used in multichannel incoherent spin transport Non-local spin signal obtained because spin asymmetry Not valid a priori for coherent few channel conductor

Quantum coherent transport vs spintronics « Theorist’s blob » experiment C.P. Umbach et al., APL, 50, 1289 (1987) h/e modulations due to Aharonov-Bohm effect in the outer loop (not in the classical path) Small effect here (1 e2/h over 500 e2/h)

Quantum coherent transport vs spintronics « Theorist’s blob » experiment « Non-local » spin injection F.D. Jedema et al., Nature, 416, 713 (2002) See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985) C.P. Umbach et al., APL, 50, 1289 (1987) Few channel regime in NTs make quantum effect a priori prominent. Use of SWNT

Fabrication of SWNTs devices Johnson & Silsbee PRL 55 (1985) C.P. Umbach et al., APL, 50, 1289 (1987) Standard Nano-lithography process

Transverse anisotropy for magnetization of NiPd stripes Device geometry VSG1 1 4 2 3 VSD I12 VSG2 V34 MFM, J.-Y. Chauleau, S. Rohart, A. Thiaville (LPS,Orsay) Transverse anisotropy for magnetization of NiPd stripes Non-local geometry for charge and spin transport Side gates in addition to back gate to control locally the sections of NT

Coupled Fabry-Pérot electronic interferometers VGS1 VGS2 e- e- e- e- V (A.U.) 1 eVSD Reservoir L Reservoir R VSG1 VSG2 Resonances on lines VSG1 +a VSG2 =cste VSG1 =0 and VSG2=0 VSG1=0 and VSG2non zero VSG1 non zero and VSG2=0 VSG1 non zero and VSG2 non zero Means for characterization

Nonlinear differential conductance spectroscopy GL GR eVSD VSD DE Reservoir L Reservoir R 2DE VG VG Fabry-Pérot electronic interferometer Direct access to level spacing dI/dV (4e2/h) 1

Non-local voltage signal VSG1 VSG2 VBG N F F N H INL G12 V34 Tartan pattern for non-local voltage as a function of side gates Characteristic hysteretic switching of non-local voltage A priori interplay between non local spin transport and orbital coherence

Gate modulations of non-local voltage signal MV MV=V34P-V34AP VSG1 VSG2 VBG N F F N H INL VBias V34 Gate modulation of non local voltage according to tartan pattern Locally gate controlled MV

Anomalous hysteresis in the current VBG Anomalous hysteresis in the current VSG1 VSG2 N F F N H INL MG=1-G12AP/G12P MV=V34P-V34AP G12 V34 N-F non-local conductance N-F non-local voltage MG MV MG controlled by remote side gate Sign change in MV specific to coherent case Non local spin transitor action in G and V CFP et al. PRB 81, (2010)

Resistor network model ? VSD Vc3 Vc4 1 N 2 F 3 F 4 N NT12 NT23 NT34 Ic12 Icw1 Icw3 Icx3 Icw4 Icx4 Icx1 Model conventionally used in incoherent spin transport Non-local spin signal obtained because spin asymmetry N-F current independent of magnetization relative orientations (also found In more sophisticated models e.g. Takahashi & Maekawa).

Multi-terminal scattering appoach 2 F 3 F VSD The scattering approach provides an explanation for both non local signals in V and G. Difficult to obtain N-F current magnetic configuration dependent in the diffusive Incoherent regime A. Cottet, CFP and T. Kontos Phys. Rev. B 79, 125422 (2009)

Spectroscopy of conductance VSG1 VSG2 VBG N F F N H INL G12 V34 Interference fringes observed in the conductance Multiple Fabry-Perot electronic interferometers physics Energy scale correspond to one NT section here CFP et al. PRB 81, (2010)

Magnetic configuration dependent phase shift VSG1 VSG2 VBG N F F N H INL G12 V34 Modulations of GP due to Fabry-Perot physics The orbital phase depends on magnetic configuration ! Gate modulations of MG phase shifted CFP et al. PRB 81, (2010) Quantitative agreement with scattering theory Orbitally coherent spintronics Theory : A. Cottet, CFP and T. Kontos Phys. Rev. B 79, 125422 (2009)

« Theorist’s blob » experiment Geometric Phase Aharonov-Bohm Classical path Quantum mechanical path

« Theorist’s blob » experiment VSD V34 I12 1 µm Photo MEB

Nonlinear spectroscopy VBG N F 1 2 3 4 Nonlinear spectroscopy of Fabry-Perot interferometers in carbon nanotube section

Magnetic switchings Anomalous spin signal in the conductance N-N VBG N F 1 2 3 4 Anomalous spin signal in the conductance N-N N-N spin spin signal is temperature dependent

Spin signal temperature dependance No Temperature dependance of spin signal in conductance F-F signal Spin signal decrepancy in conductance N-N with temperature Quantitative agreement with theory with no parameters

Conclusion Observation of local gate controlled “non local” magnetoresistance in mutli-terminal SWNT devices Multi-terminal devices are multi-electronic interferometers Anomalous magnetoresistance between a N contact and a F contact in conductance due to delocalization of electronic waves Behaviour qualitatively and quantitatively reproduced within the scattering approach Orbitally phase coherent spintronics Perspective : new device with no classical analog to investigate phase coherent spin polarised electronic wave function Maybe a new way to couple the orbital and spin degree of freedom ?