SKIROC status Calice meeting – Kobe – 10/05/2007.

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
7 th International Meeting on Front-End Electronics, Montauk NY – May 18 th - 21 st, 2009 Cyclic-ADC developments for Si calorimeter of ILC Laurent ROYER,
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
ECAL EUDET MODULE progress & perspective EUDET annual meeting, oct, 18 st, Munich.
08/10/2007Julie Prast, LAPP, Annecy1 The DHCAL DIF and the DIF Task Force Julie Prast, LAPP, Annecy.
EUDET FEE status C. de LA TAILLE. EUDET annual meeting 6 oct 08 cdlt : FEE statrus 2 EUDET module FEE : main issues 2 nd generation ASICs –Self triggering.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
EUDET JRA3 Front-End electronics in 2007 C. de La Taille IN2P3/LAL Orsay HaRDROCSKIROCSPIROC.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
ILD/ECAL MEETING 2014, 東京大学, JAPAN
Second generation Front-End ASICs for CALICE LCWS07 Hamburg C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration HaRDROCSKIROCSPIROC.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
12/09/2007Julie Prast, LAPP, Annecy1 The DIF Task Force and a focus on the DHCAL DIF Remi Cornat, Bart Hommels, Mathias Reinecke, Julie Prast.
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
CALICE/EUDET FEE status C. de LA TAILLE. 31 aug 2009 EUDET SC meeting Status of JRA3 Front End Electronics 2 ILC front-end ASICs : the ROC chips SPIROC.
Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10 th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard.
CALICE/EUDET FEE status C. de LA TAILLE. 16 jun 2009 TB meeting FNAL ASICs for CALICE/EUDET 2 First generation ASICs Readout of physics prototypes (ECAL,
CALICE/EUDET developments in electronics C. de La Taille IN2P3/LAL Orsay.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
SOCLE Meeting Dec Roman Pöschl LAL Orsay On behalf of the groups performing Electronics R&D - Introduction - SKIROC2 – Handling the large Dynamic.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
CALICE ECAL meeting VFE ASIC Next & next to next version 17 Janvier 2006, LAL Orsay.
DHCAL Acquisition with HaRDROC VFE Vincent Boudry LLR – École polytechnique.
STATUS OF SPIROC measurement
3-bit threshold adjustment
A 12-bit low-power ADC for SKIROC
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
HR3 status.
Status of ROC chips C. De La Taille for the OMEGA group
ECAL EUDET MODULE Summary talk
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
R&D activity dedicated to the VFE of the Si-W Ecal
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip
Electronics for Si-W calorimeter
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Front-End electronics for CALICE Calorimeter review Hamburg
EUDET – LPC- Clermont VFE Electronics
Scintillator HCAL readout
02 / 02 / HGCAL - Calice Workshop
prototype PCB for on detector chip integration
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
Presentation transcript:

SKIROC status Calice meeting – Kobe – 10/05/2007

Common DAQ Slice FE FPGA PHY VFE ASIC Dat a Clock+Config+Control VFE ASIC VFE ASIC VFE ASIC Conf/ Clock - Timing is the same for all detectors - Number of channels involves embedded electronic for all detectors -Outputting of data is done the same way for all detectors  Back-end of very-front-end shall be common for all detectors VFE AsicFE electronicDetector FE of VFE BE of VFE Concentrator

Time considerations time Time between two trains: 200ms (5 Hz) Time between two bunch crossing: 337 ns Train length 2820 bunch X (950 us) Acquisition 1ms (.5%) A/D conv..5ms (.25%) DAQ.5ms (.25%) 1% duty cycle IDLE MODE 99% duty cycle 199ms (99%) analog detectors only

Read out : token ring Acquisition A/D conv.DAQIDLE MODE Chip 0 Chip 1 Acquisition A/D conv.DAQIDLE MODEIDLE Chip 2 Acquisition A/D conv.IDLE MODEIDLE Chip 3 Acquisition A/D conv.IDLE MODEIDLE Chip 4 Acquisition A/D conv.IDLE MODEIDLEDAQ Chip 0Chip 1Chip 2Chip 3Chip 4 5 events3 events 0 event 1 event 0 event Data bus

Acquisition mode in test beam  No time measurement  Synchronous hold validated by internal trigger BCID NN+1N+2 Trig OR Trigger_validb Hold Machine sync. Hold Peaking time Valid_hold (analogue memory address) kkk+1

SKIROC presentation - ECAL read out - Silicon PIN detector - 36 channels -Compatible new DAQ

Main features  Designed for 5*5 mm² pads  36 channels (instead of 72 to reduce cost of prototype)  Detector AC/DC coupled  Auto-trigger MIP/noise ratio on trigger channel : 16  2 gains / 12 bit ADC  2000 MIP MIP/noise ratio : 11  Power pulsing Programmable stage by stage  Calibration injection capacitance  Embedded bandgap for references  Embedded DAC for trig threshold  Compatible with physic proto DAQ Serial analogue output External “force trigger”  Probe bus for debug  24 bits Bunch Crossing ID  SRAM with data formatting  Output & control with daisy-chain Digital on FPGA for debug

One channel

Block scheme of SKIROC Ch. 0 Ch. 1 Analog channel Analog mem. 36-channel Wilkinson ADC Analog channel Analog mem. Ch. 35 Analog channel Analog mem. Bunch crossing 24 bit counter Time digital mem. Event builder Memory pointer Trigger control Main Memory SRAM Com module ECAL SLAB

SKIROC status  Chips in hand  Test board debugged  Consumption OK  Chip alive  Slow control loading checksum OK  First test are conducted now

ADC design Work done at LPCC (Clermont Ferrand)

Wilkinson ADC in SKIROC  Characteristics:  Technology: BiCMOS SiGe 0.35µm  Power supply: 3.5V (digital: 2.5V)  Clock frequency: 50 MHz  Differential architecture  Gray counter  Die area: 0.12 mm 2 1V 0.125V NonLinearity (mV) NonLinearity (simulated): < ± 500 µV up to 125mV < 0.1% from 125mV to 1V  Performance (simulated):  Resolution: 12 bits  Consumption: 3 mW  Conversion time: 80 µs 50MHz)  Integrated cons.: (3mW * 80µs)/200ms= 1.2µW  Current source (ramp generator):  Input dynamic signal: 1V Common Mode  2V differential ramp generator  T° sensitivity : 40 ppm/°C max (20 to 50°C)  Power supply sensitivity: 5 ppm/°C (±50 mV) Wilkinson ADC architecture

Next step: Pipeline ADC  Performance (measured):  Resolution: 10 bits  Consumption: 35 mW  Conversion time: 0.25 µs 40MHz)  Integrated cons.: (35mW * 0.25µs)/200ms= 0.044µW Integral NL LSB Differential NL LSB Noise (measured): < % C.L.  Characteristics:  Technology: CMOS SiGe 0.35µm  Power supply: 5V (digital: 2.5V)  Clock frequency: 40 MHz  Differential architecture  10 stages bit/stage  Die area: 1.2 mm 2

PCBs

FEV4 : New PCB description  Compatible physics prototype  Same size as FEV3  1 active wafer (instead of 2 for FEV3)  Chip buried in the PCB

FEV4 – stack up description TOP L2 L3 L4 L5 L6 L7 BOT Single sided Double sided Single sided 950µm ILC_PHY4 SIG/GND GND VCC SIG/GND GND PADS

FEV4 – signal density Difficulty are already foreseen to carry signals from one stitchable PCB to another

FEV4 pictures

FEV4 duty  Chip on board test First prototype of chip in board  Thin PCB coupling measurement  Chip in beam test Technology is 0.35µ Analog part is very close to final version Digital missing  Power pulsing test

FEV4 – missing features  5*5 mm² pads  Stitching  Daisy chain  Flat buried chip SKIROC

Conclusion  Chips are in test MPW has been delayed by a couple of weeks  1 Test board is ready 3 more PCBs are due Firmware is in developpment, slow control OK Labview software is in development, SC OK  First results delayed due to late chip delivery but analogue measurement soon