Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de Technische.

Slides:



Advertisements
Similar presentations
Jonathan Smith, 1 st March, COLSIM, CERN 1 Recent Developments with ILC Collimator Wakefield Calculations Jonathan Smith (Lancaster University/Cockcroft.
Advertisements

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Scattering Parameter Calculation for.
Institut Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8,
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
ILC Wakefest Workshop, Dec 11-13, 2007 WakeFest Summary 2.
The Compendium of formulae of kick factor. PLACET - ESA collimation simulation. Adina Toader School of Physics and Astronomy, University of Manchester.
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
IRPSS: A Green’s Function Approach to Modeling Photoinjectors Mark Hess Indiana University Cyclotron Facility & Physics Department *Supported by NSF and.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, N. Mounet, T. Rijoff, B. Salvant.
Update of the SPS transverse impedance model Benoit for the impedance team.
Friday meeting Nawin Juntong Halloween σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC]
Wakefields in XFEL undulator intersections Igor Zagorodnov Beam Dynamics Group Meeting
Updated status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, B. Mikulec, N. Mounet, T. Rijoff,
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
ILC Damping Rings Mini-Workshop, KEK, Dec 18-20, 2007 Status and Plans for Impedance Calculations of the ILC Damping Rings Cho Ng Advanced Computations.
Collimation for the Linear Collider, Daresbury.1 Adam Mercer, German Kurevlev, Roger Barlow Simulation of Halo Collimation in BDS.
13 September 2006 Global Design Effort 1 ML (x.7) Goals and Scope of Work to end FY09 Nikolay Solyak Fermilab Peter Tenenbaum SLAC.
Trapped Modes in LHC Collimator (II) Liling Xiao Advanced Computations Department SLAC National Accelerator Laboratory.
Simulating Short Range Wakefields Roger Barlow XB10 1 st December 2010.
Issues in Simulating the Effects of Wakefields Roger Barlow LET Workshop 13 th December 2007.
Impedance Budget Database Olga Zagorodnova BD meeting, DESY.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
BEAMLINE HOM ABSORBER O. Nezhevenko, S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory December 11, 2007 Wake Fest 07 - ILC wakefield workshop.
Collimator Wakefields Igor Zagorodnov BDGM, DESY
Jonathan Smith, 27 th August 2008, Uppsala 1 Optimal Collimators for the ILC Jonathan Smith (Lancaster University/Cockcroft Institute)
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
Helical Accelerating Structure with Controllable Beam Emittance S.V. Kuzikov 1, A.A. Vikharev 1, J.L. Hirshfield 2,3 1 Institute of Applied Physics RAS,
Python based particle tracking code for monitor design Kenichirou Satou J-PARC/KEK.
X-band Based FEL proposal
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
HOMs in the TESLA 9-cell cavity HOMs in the XFEL and ILC Rainer Wanzenberg SPL HOM workshop CERN, June 25 – 26, 2009.
ICFA Workshop on High Order Modes in Superconducting Cavities Batavia, IL, USA, 14 th – 16 th of July 2014 Thomas Flisgen, Johann Heller and Ursula van.
Bunch Shaping for Future Dielectric Wakefield Accelerators W. Gai Mini-Workshop on Deflecting/Crabbing RF Cavity Research and application in Accelerators.
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
Impedance & Instabilities
Wake-fields simulations and Test Structure
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Wakefield issues due to a slotted foil for a THz source
Panel Discussion 3: Impedance Codes
Coupler RF kick simulations.
Simulation of laser ion-acceleration and transport
Challenges in Electromagnetic Modeling Scalable Solvers
T. Agoh (KEK) Introduction CSR emitted in wiggler
Manchester University Christmas talk 04/01/2010
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Stefano Romeo on behalf of SPARC_LAB collaboration
Numerical Studies of Resistive Wall Effects
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Wakefield simulations for ILC cavity
Status and details of coupler kick and wake simulations
Electron cloud and collective effects in the FCC-ee Interaction Region
Coupler kick and wake simulations upgrade
Update of CLIC accelerating structure design
Yunhai Cai Beam Physics Department Head
Parallel 3D Finite Element Particle-In-Cell Simulations with Pic3P*
Transition Wakes in the 3.9 GHz Cryomodule
L Ge, L Lee, A. Candel, C Ng, K Ko, SLAC
Igor Zagorodnov and Martin Dohlus
¼ meshed models for Omega3P calculations
Status with Particle Studio simulations
SRF Cavity Designs for the International Linear Collider*
Beamline Absorber Study Using T3P
Collimator Wakefields
Evgenij Kot XFEL beam dynamics meeting,
Igor Zagorodnov and Martin Dohlus
Presentation transcript:

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Large Scale 3D Wakefield Simulations with PBCI S. Schnepp, W. Ackermann, E. Arevalo, E. Gjonaj, and T. Weiland "Wake Fest 07 - ILC wakefield workshop at SLAC” December 2007

1 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Outline IntroductionIntroduction Numerical MethodNumerical Method Parallelization StrategyParallelization Strategy Modal Termination of Beam PipesModal Termination of Beam Pipes PBCI Simulation ExamplesPBCI Simulation Examples

2 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Introduction 1.A new generation of LINACs with ultra-short electron bunches a.bunch size for ILC: 300 μm b.bunch size for LCLS: 20 μm 2.Geometry of tapers, collimators… far from rotational a.8 rectangular collimators at ILC-ESA in the design process b.30 rectangular-to-round transitions in the undulator of LCLS 3.Many (semi-) analytical approximations become invalid a.based on rotationally symmetric geometry b.low frequency assumptions (Yokoya, Stupakov) c.detailed physics needed for high frequency wakes (Bane) Motivation for PBCI:

3 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Introduction mm 38.1mm 15.05mm 2.75mm 17.65mm 38.05mm ILC-ESA collimator #8 ILC-ESA collimator #3 Courtesy: N. Watson, Birmingham 1 m bunch length300μm collimator length~1.2m catch-up distance~2.4m beam view side view

4 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Introduction bunch length1cm taper length50cm tube shielding outgoing pipe step vacuum vessel gap PITZ diagnostics double cross Tapered III Courtesy: R. Wanzenberg, DESY bunch length2.5mm bunch width2.5mm structure length325mm vacuum slots elliptic pipe

5 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Introduction 3D-codes 1.Wake field simulations in arbitrary 3D-geometry 3D-codes (quasi-) dispersionless codes 2.Accurate numerical solutions for high frequency fields (quasi-) dispersionless codes parallelized codes 3.Utilizing large computational resources for ultra-short bunches parallelized codes moving window codes 4.Specialized algorithms for long accelerator structures moving window codes There is an actual demand for:

6 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Introduction DimensionsNondispersiveParallelizedMoving window BCI / TBCI2.5DNo Yes NOVO2.5DYesNo ABCI2.5DNo Yes MAFIA2.5/3DNo Yes GdfidL3DNoYes Tau3P3DNoYesNo ECHO2.5/3DYesNoYes CST Particle Studio 3DNo PBCI3DYes NEKCEM3DQuasiYesNo Time 20 years An (incomplete) survey of available codes 5 years

7 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Outline IntroductionIntroduction Numerical MethodNumerical Method Parallelization StrategyParallelization Strategy Modal Termination of Beam PipesModal Termination of Beam Pipes PBCI Simulation ExamplesPBCI Simulation Examples

8 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Numerical Method The FIT discretization FIT semidiscrete energy conservation semidiscrete charge conservation Topology of FIT:

9 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Numerical Method Using the conventional leapfrog time integration Behavior of numerical phase velocity vs. propagation angle Stable but large dispersionNo dispersion but unstable

10 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Numerical Method Implementing a dispersion-free scheme leads to this: Numerical phase velocity and amplification vs. propagation angle Neutrally stable No longitudinal dispersion

11 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Outline IntroductionIntroduction Numerical MethodNumerical Method Parallelization StrategyParallelization Strategy Modal Termination of Beam PipesModal Termination of Beam Pipes PBCI Simulation ExamplesPBCI Simulation Examples

12 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Parallelization Strategy A balanced domain partitioning approach total computational domain intermediate subdomains active subdomains processor #1 processor #2 processor #3 Equal loads assigned to each node: binary tree leafs

13 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Parallelization Strategy Processor Number Number of Grid Points moving grid window Distribution of grid points Example: Tapered transition for PETRA III Domain partitioning pattern for 7 processors Grid points Total Min Max Dev.< 1.0%

14 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Ideal 1E+06 cells Parallelization Parallel performance tests

15 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Ideal 10E+06 cells Parallelization Parallel performance tests

16 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Ideal 50E+06 cells Parallelization Parallel performance tests

17 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Ideal 100E+06 cells Parallelization Parallel performance tests

18 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Ideal 200E+06 cells Parallelization Parallel performance tests

19 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Parallelization Strategy TEMF Cluster: 20 INTEL 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network Parallel performance tests

20 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Parallelization Strategy Parallel performance tests TEMF Cluster: 20 INTEL 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

21 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Outline IntroductionIntroduction Numerical MethodNumerical Method Parallelization StrategyParallelization Strategy Modal Termination of Beam PipesModal Termination of Beam Pipes PBCI Simulation ExamplesPBCI Simulation Examples

22 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Modal Termination of Pipes 1.Indirect integration of potential for 2D-structures (Weiland 1983, Napoly 1993) direct indirect Indirect integration schemes irrotational 2.Generalization for 3D-structures (A. Henke and W. Bruns, EPAC’06, July 2006, Edinburgh, UK)

23 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Modal Termination of Pipes directmodal Modal approach n-th (TM) mode contribution spectral coefficient of n-th (TM) mode - ~ 1982 Robert Siemann - “Indirect methods for wake potential integration”, I. Zagorodnov, PRSTAB 9 ‘06 - “Eigenmode expansion method in the indirect calculation of wake potential in 3D structures”, X. Dong, E. Gjonaj, ICAP’06

24 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Modal Termination of Pipes 1.Time domain integration in the inhomogeneous sections: 2.Modal analysis at z = 0: 3.Compute spectral coefficients (FFT): 4.Compute wake potential contribution per mode (IFFT): 5.Compute wake potential transition in the outgoing pipe:

25 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) lowest eigenmode5 eigenmodes10 eigenmodes15 eigenmodes 20 eigenmodes Modal Termination of Pipes Using FD reconstruction in long intermediate pipes bunch full Time Domain bunch E z / [kV /m] injector section diagnostics cross 1mm step FD analysis reconstruction In an accurate simulation ~300 modes

26 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Outline IntroductionIntroduction Numerical MethodNumerical Method Parallelization StrategyParallelization Strategy Modal Termination of Beam PipesModal Termination of Beam Pipes PBCI Simulation ExamplesPBCI Simulation Examples

27 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) ILC-ESA collimator ILC-ESA collimator #8 Convergence vs. grid step bunch size300μm no. of grid points~450M no. of processors24 simulation time85hrs Moving window: 3 mm length

28 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) ILC-ESA collimator ILC-ESA collimator #8 Direct and transition wakes m m mm 38.1 mm mm 2.75 mm mm bunch

29 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler TESLA 9-cell cavity E z / [kV /m] bunch length1mm bunch charge1nC cavity length1.5m no. of grid points~760M no. of processor cores 408 simulation time~40hrs bunch

30 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler TESLA 9-cell cavity Longitudinal wake potential

31 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler HOM / HOM-RF coupler (present DESY design) Beam view Courtesy: I. Zagorodnov Upstream coupler HOM Downstream coupler RF + HOM

32 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler ECHO3D PBCI Upstream coupler

33 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler ECHO3D Downstream coupler PBCI

34 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler ECHO3D PBCI

35 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) old new I. Zagorodnov, M. Dohlus TESLA / HOM coupler

36 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) + old new old new I. Zagorodnov, M. Dohlus + TESLA / HOM coupler

37 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler Transverse wake potential Present DESY Design Beam view Preliminary

38 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) + TESLA / HOM coupler W x,sum = W x,up + W x,down W y,sum = W y,up + W y,down Assumption of linearity not valid + 

39 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler Proposed DESY Design (Dohlus, Zagorodnov) Beam view (symmetrical coupler positioning) Transverse wake potential Preliminary

40 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) TESLA / HOM coupler proposed present proposed present Preliminary

41 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Tapered Transition PETRA III PETRA III No convergence with MAFIA due to memory limitations and dispersion Complex geometry “Wake Computations for Undulator Vacuum Chambers of PETRA III”, R. Wanzenberg, PAC’07

42 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector Low-Emittance Injector Development DESY/Zeuthen

43 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector Optimization studies performed

44 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector longitudinal current profile longitudinal wake potential

45 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector

46 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector

47 S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) PITZ Photoinjector A minimum of the transverse kick was found at 8mm distance.

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: S. Schnepp et al. Institut für Theorie Elektromagnetischer Felder (TEMF) Large Scale 3D Wakefield Simulations with PBCI S. Schnepp, W. Ackermann, E. Arevalo, E. Gjonaj, and T. Weiland "Wake Fest 07 - ILC wakefield workshop at SLAC” December 2007