4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.

Slides:



Advertisements
Similar presentations
4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router.
Advertisements

Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Network Layer-11 CSE401N: Computer Networks Lecture-9 Network Layer & Routing.
Network Layer4-1 Computer Networking (Datakom) Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 1 ECSE-4670: Computer Communication Networks (CCN) Network Layer Shivkumar.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 13.
1 Lecture 11: The Network Layer Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3 slides.
1 Network Layer: Host-to-Host Communication. 2 Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using.
Network Layer4-1 Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Announcement r Project 2 Extension ? m Previous grade allocation: Projects 40% –Web client/server7% –TCP stack21% –IP routing12% Midterm 20% Final 20%
Network Layer session 1 TELE3118: Network Technologies Week 4: Network Layer Basics, Addressing Some slides have been taken from: r Computer Networking:
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 15.
The Routing & the IP network data link physical network data link physical network data link physical network data link physical network data link physical.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
4: Network Layer4a-1 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol:
Introduction to Network Layer. Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using bridges? –No!
Network Layer —— the core of networking. The Network Core  mesh of interconnected routers  the fundamental question: how is data transferred through.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 18 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
4: Network Layer4a-1 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
Introduction 1-1 EKT355/4 ADVANCED COMPUTER NETWORK MISS HASNAH AHMAD School of Computer & Communication Engineering.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Forwarding.
The Internet Network layer
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016.
Network Layer4-1 Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol – Datagram.
Chapter 4: Network Layer
INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723
Data Communication and Networks
Computer Communication Networks
Some slides have been taken from:
Chapter 4: Network Layer
Chapter 4 Network Layer All material copyright
Chapter 4: Network Layer
Network Layer Goals: Overview:
CS4470 Computer Networking Protocols
Chapter 4-1 Network layer
Network layer functions
Network Layer I have learned from life no matter how far you go
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
ECSE-4670: Computer Communication Networks (CCN)
Chapter 4: Network Layer
Chapter 4: Network Layer
Presentation transcript:

4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale m how a router works m advanced topics: IPv6, multicast r instantiation and implementation in the Internet Overview: r network layer services r hierarchical routing r IP r what’s inside a router? r IPv6

4: Network Layer4a-2 Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host, router three important functions: r path determination: route taken by packets from source to dest. Routing algorithms r switching: move packets from router’s input to appropriate router output r call setup: some network architectures require router call setup along path before data flows network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical application transport network data link physical

4: Network Layer4a-3 Network service model Q: What service model for “channel” transporting packets from sender to receiver? r guaranteed bandwidth? r preservation of inter-packet timing (no jitter)? r loss-free delivery? r in-order delivery? r congestion feedback to sender? ? ? ? virtual circuit or datagram? The most important abstraction provided by network layer: service abstraction

4: Network Layer4a-4 Virtual circuits r call setup, teardown for each call before data can flow r each packet carries VC identifier (not destination host OD) r every router on source-dest path s maintain “state” for each passing connection m transport-layer connection only involved two end systems r link, router resources (bandwidth, buffers) may be allocated to VC m to get circuit-like perf. “source-to-dest path behaves much like telephone circuit” m performance-wise m network actions along source-to-dest path

4: Network Layer4a-5 Virtual circuits: signaling protocols r used to setup, maintain teardown VC r used in ATM, frame-relay, X.25 r not used in today’s Internet application transport network data link physical application transport network data link physical 1. Initiate call 2. incoming call 3. Accept call 4. Call connected 5. Data flow begins 6. Receive data

4: Network Layer4a-6 Datagram networks: the Internet model r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection” r packets typically routed using destination host ID m packets between same source-dest pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data

4: Network Layer4a-7 Network layer service models: Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Bandwidth none constant rate guaranteed rate guaranteed minimum none Loss no yes no Order no yes Timing no yes no Congestion feedback no (inferred via loss) no congestion no congestion yes no Guarantees ? r Internet model being extented: Intserv, Diffserv m Chapter 6

4: Network Layer4a-8 Datagram or VC network: why? Internet r data exchange among computers m “elastic” service, no strict timing req. r “smart” end systems (computers) m can adapt, perform control, error recovery m simple inside network, complexity at “edge” r many link types m different characteristics m uniform service difficult ATM r evolved from telephony r human conversation: m strict timing, reliability requirements m need for guaranteed service r “dumb” end systems m telephones m complexity inside network

4: Network Layer4a-9 Routing Graph abstraction for routing algorithms: r graph nodes are routers r graph edges are physical links m link cost: delay, $ cost, or congestion level Goal: determine “good” path (sequence of routers) thru network from source to dest. Routing protocol A E D CB F r “good” path: m typically means minimum cost path m other def’s possible

4: Network Layer4a-10 Routing Algorithm classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link state” algorithms Decentralized: r router knows physically- connected neighbors, link costs to neighbors r iterative process of computation, exchange of info with neighbors r “distance vector” algorithms Static or dynamic? Static: r routes change slowly over time Dynamic: r routes change more quickly m periodic update m in response to link cost changes

4: Network Layer4a-11 Hierarchical Routing scale: with 50 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would swamp links! administrative autonomy r internet = network of networks r each network admin may want to control routing in its own network Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice

4: Network Layer4a-12 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m “intra-AS” routing protocol m routers in different AS can run different intra- AS routing protocol r special routers in AS r run intra-AS routing protocol with all other routers in AS r also responsible for routing to destinations outside AS m run inter-AS routing protocol with other gateway routers gateway routers

4: Network Layer4a-13 Intra-AS and Inter-AS routing Gateways: perform inter-AS routing amongst themselves perform intra-AS routers with other routers in their AS inter-AS, intra-AS routing in gateway A.c network layer link layer physical layer a b b a a C A B d A.a A.c C.b B.a c b c

4: Network Layer4a-14 Intra-AS and Inter-AS routing Host h2 a b b a a C A B d c A.a A.c C.b B.a c b Host h1 Intra-AS routing within AS A Inter-AS routing between A and B Intra-AS routing within AS B r We’ll examine specific inter-AS and intra-AS Internet routing protocols shortly

4: Network Layer4a-15 The Internet Network layer routing table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router “signaling” Transport layer: TCP, UDP Link layer physical layer Network layer

4: Network Layer4a-16 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router and physical link m router’s typically have multiple interfaces m host may have multiple interfaces m IP addresses associated with interface, not host, router =

4: Network Layer4a-17 IP Addressing r IP address: m network part (high order bits) m host part (low order bits) r What’s a network ? ( from IP address perspective) m device interfaces with same network part of IP address m can physically reach each other without intervening router network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address) LAN

4: Network Layer4a-18 IP Addressing How to find the networks? r Detach each interface from router, host r create “islands of isolated networks Interconnected system consisting of six networks

4: Network Layer4a-19 IP Addresses 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to to to bits given notion of “network”, let’s re-examine IP addresses: “class-full” addressing:

4: Network Layer4a-20 IP addressing: CIDR r classful addressing: m inefficient use of address space, address space exhaustion m e.g., class B net allocated enough addresses for 65K hosts, even if only 2K hosts in that network r CIDR: Classless InterDomain Routing m network portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in network portion of address network part host part /23

4: Network Layer4a-21 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol: dynamically get address: “plug-and-play” m host broadcasts “DHCP discover” msg m DHCP server responds with “DHCP offer” msg m host requests IP address: “DHCP request” msg m DHCP server sends address: “DHCP ack” msg

4: Network Layer4a-22 IP addresses: how to get one? Network (network portion): r get allocated portion of ISP’s address space: ISP's block /20 Organization /23 Organization /23 Organization /23... ….. …. …. Organization /23

4: Network Layer4a-23 Hierarchical addressing: route aggregation “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16” /23 Organization Hierarchical addressing allows efficient advertisement of routing information:

4: Network Layer4a-24 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16 or /23” /23 Organization

4: Network Layer4a-25 IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes

4: Network Layer4a-26 Getting a datagram from source to dest. IP datagram: A B E misc fields source IP addr dest IP addr data r datagram remains unchanged, as it travels source to destination r addr fields of interest here Dest. Net. next router Nhops routing table in A

4: Network Layer4a-27 Getting a datagram from source to dest A B E Starting at A, given IP datagram addressed to B: r look up net. address of B r find B is on same net. as A r link layer will send datagram directly to B inside link-layer frame m B and A are directly connected Dest. Net. next router Nhops misc fields data

4: Network Layer4a-28 Getting a datagram from source to dest A B E Dest. Net. next router Nhops Starting at A, dest. E: r look up network address of E r E on different network m A, E not directly attached r routing table: next hop router to E is r link layer sends datagram to router inside link- layer frame r datagram arrives at r continued….. misc fields data

4: Network Layer4a-29 Getting a datagram from source to dest A B E Arriving at , destined for r look up network address of E r E on same network as router’s interface m router, E directly attached r link layer sends datagram to inside link-layer frame via interface r datagram arrives at !!! (hooray!) misc fields data network router Nhops interface Dest. next