Microwave Device Term Project

Slides:



Advertisements
Similar presentations
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Advertisements

The state-of-art based GaAs HBT
(AlGaN/GaN) High electron mobility transistors Low dimensional System Master of Nanoscience Olatz Idigoras Lertxundi.
High Electron Mobility Transistors
SiC MESFET Rajesh C. Panda EEL 6935 WBG I Spring 2003.
Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Effects of surface oxide on wafer bonding.
GaN HEMT Power Switch 의 특성 향상 방안 최영환.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Metal Semiconductor Field Effect Transistors
Evaluation of GaAs Power MESFET for Wireless Communication
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
Highly Linear Power Amplifiers for Broadband Wireless Applications Power Amplifiers for Wireless Communications Workshop September 9, 2002 M. Siddiqui,
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
Electron Scattering Length - Mean Free Path – le - Avg. distance between scattering Si - ~ 5nm; GaAs - ~ 100 nm Electrical Resistance is closely related.
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
The state-of-the-art InP-based HEMTs
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
MSE-630 Gallium Arsenide Semiconductors. MSE-630 Overview Compound Semiconductor Materials Interest in GaAs Physical Properties Processing Methods Applications.
C. KOO Millimeter-wave Integrated Systems Lab. RF Power Transistors For Mobile Applications 전기공학부 구찬회.
Chapter 1. Background on Microwave Transistors
B. BOUDJELIDA1 UMan LNA Programme 4 th SKADS Workshop, Lisbon, 2-3 October 2008 University of Manchester: Progress on LNA Programme B. Boudjelida, A. Sobih,
ESD Protection In Microwave Device 이 민 규.
High Electron Mobility Transistors (HEMT)
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
High Performance E-Mode HEMT and the Application 박 상 호.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
InAs Inserted Channel HEMT MDCL 이 종 원.
Leakage current of device HEMT versus MOSFET 이진식.
Crystal Growth of III/V Semiconductor Nanowires Kobi Greenberg.
InAs Inserted HEMT 연성진.
Sanae Boulay, Limelette, Nov 05 th 20091/20 S. Boulay, B. Boudjelida, A. Sharzad, N. Ahmad, M. Missous Novel Ultra Low Noise Amplifiers based on InGaAs/InAlAs.
Flip Chip Technology Kim Dong Hwan Microwave Device Term Project
The New Single-silicon TFTs Structure for Kink- current Suppression with Symmetric Dual-Gate by Three Split Floating N+ Zones Dept. of Electrical Engineering,
High Electron Mobility Transistor (HEMT)
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
© Fraunhofer IAF Mechanisms of 1/f noise and Gain Instabilities in metamorphic HEMTS D. Bruch; M. Seelmann-Eggebert; S. Guha Fraunhofer Institute for Applied.
University of California, Santa Barbara
High Electron Mobility Transistor
STANFORD Advanced LIGO High-Power Photodiodes David Jackrel, PhD Candidate Dept. of Materials Science and Engineering Advisor: James S. Harris LSC Conference,
1 Materials Beyond Silicon Materials Beyond Silicon By Uma Aghoram.
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Millimeter-wave Device & Circuit Lab. (MDCL) Non-Alloyed Ohmic Contact in HEMTs Microwave devices 노 훈 희  Introduction  Ohmic.
Indium Phosphide and Related Materials
Some Microwave Devices Impatt Diodes PIN Diodes Varactor Diodes YIG Devices (Yttrium-Iron Garnet) Dielectric Resonators BIPOLAR TRANSISTORS GaAsFETs HEMT.
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Advanced LIGO Photodiodes ______
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
GaAs Process & Devices Anurag Nigam.
Introduction to GaAs HBT and current technologies
MoS2 RF Transistor Suki Zhang 02/15/17.
Project Proposal on "Device and nanotechnology".
ECE 695 Discussion Session GaN HEMT Technology – Recent Advances
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Metal Semiconductor Field Effect Transistors
Device Structure & Simulation
Contact Resistance Modeling in HEMT Devices
Lab3: GaAs Process And Devices
Other FET’s and Optoelectronic Devices
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
An Overview of Silicon-on-Sapphire CMOS Technologies
Heterojunction Bipolar Transistor
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Epitaxial Deposition
Presentation transcript:

Microwave Device Term Project Metamorphic Hemt device 성능 최적화 & 연구방향 2004/ 6/ 22 Lee Kang Min School of Electrical Engineering and Computer Science Seoul National University, Korea Millimeterwave Device and Circuit Lab.

Content - Introduction of Metamorphic-HEMT. 1. Overview of Metamorphic-HEMT. - Introduction of Metamorphic-HEMT. 2. Key issue for Good performance Metamorphic-HEMT. -Process part. -Material Growth part. 3.Overcome method each key issue. 4.Conclusion. -future work.

1. Overview of Metamorphic-HEMT 1) Lattice-matched HEMT -격자 상수가 비슷한 물질들의 이용한 HEMT 구조 -Conventional AlGaAs/GaAs 구조 -ex) InP based HEMT: Al0.48In0.52As/In0.53Ga0.47As/InP 구조 2) Pseudomorphic HEMT -격자 상수가 다른 물질을 채널에 얇게 기른 HEMT 구조 -ex)AlGaAs/GaAs HEMT의 channel에 InGaAs 물질을 사용 3) Metamorphic HEMT - GaAs substrate + InP HEMT Epitaxy를 이용한 HEMT 구조 - Buffer 사용 GaAs InP Metamorphic low cost Good performance

1. Overview of Metamorphic-HEMT 2. Introduction of Metamorphic-HEMT ▶ Advantage - low cost & large scale (using GaAs substrate) - Multi-used. ( flexible Epitaxy design ) Low noise amp , power amp , switch …. - Stable High frequency & low noise performance ▶ Disadvantage - Buffer issue-lattices mismatching  defect (Metamorphic buffer)

2. Key issue for Good performance Metamorphic-HEMT 1.Process part Channel SiN Passivation x Gate Side Recess EHP Generation C g,ext Lg Dg General process issue Lg  Keeping (Lg/Dg)  Suppression of Cg,ext. Surface Passivation. Gate, Ohmic metal tech. Side Recess tech ( Breakdown voltage)

2. Key issue for Good performance Metamorphic-HEMT 2.Material Growth part (Epitaxy design) Gate Source Drain General Material issue Use of suitable InGaAs Channel Use of suitable M-buffer layer (Epi growth) & Doping profile InAlAs Barrier InGaAs cap InGaAs Channel InAlAs buffer Si delta doping Metamorphic-buffer GaAs Substrate

3.Overcome method each key issue 1.Process part 1) Lg  Keeping (Lg/Dg)  - Cappy group 2002. EL ( Lg=60nm ) DC: Gm= 850mS/mm , Ids~600mA/mm RF: Ft=260GHz , Fmax=490GHz * General Lg=0.1um Ft>200GHz (In0.53Ga0.48As channel using )

3.Overcome method each key issue 1.Process part 2) Suppression of Cgext – MDCL. 2004 GaAs Mantech. (Lg=0.15um) DC: Gm= 500mS/mm , Ids~450mA/mm RF: Ft=147GHz (15% Improve) * In0.40Ga0.6As channel using

3.Overcome method each key issue 1.Process part 3) Surface passivation – MDCL. Experiment (Lg=0.1um) DC: Gm= 590mS/mm(~20% improve) , Ids=600mA/mm * In0.35Ga0.65As channel using

3.Overcome method each key issue 1.Process part 4) Gate, Ohmic metal tech – Jantz group, GaAs reilability symposium 2001 (lg=0.12um) Ti Oxidation , Pt buried gate – better reilabilty & device performance * In0.3Ga0.7As channel using

3.Overcome method each key issue 1.Process part 4) Gate, Ohmic metal tech – MDCL experiment , * In0.35Ga0.65As channel using : Rc= 0.13 General using : Rc= 0.15 (cappy group) Rc≥0.15 *) Reliability of metamorphic HEMTs on GaAs substrates, Raytheon GaAs reilability symposium 2001 Pd ohmic

3.Overcome method each key issue 1.Process part 5) Side Recess tech- K.C Hwang group , IEEE MGWL 1998 (Lg=0.1um)  Double Recess ,Double Doped Gm : 1050 mS/mm Current density : 750mA/mm BVgd: 8.3V Power sensity: 509mW/mm ( InP-645mW/mm) 최적의 전력 성능 – 높은 출력 current, 높은 breakdown 전압 Epi- Drain 부근의 InGaAs channel 에서 최대 전계 감소시키는 구조 Double-doped process 구조 - drain 전류 breakdown 전압 최적화 * In0.65Ga0.35As channel using

3.Overcome method each key issue 2.Material Growth part (Epitaxy design) 1) Use of suitable InGaAs Channel – Oki elecrtonic JJAP Vol42 ,2003 (Lg = 0.1um)

3.Overcome method each key issue 2.Material Growth part (Epitaxy design) 1) Use of suitable InGaAs Channel – Weimen group EDL 1996 (0.13um)  Composit channel (for kink free) In0.52Al0.48As : transport 특성이 우수함. In0.32Ga0.68As : impact ionization 특성이 낮아서 좋음. 두 물질을 섞어서 사용하여 DC 특성 및 impact ionization 특성이 우수한 mHEMT 소자 구현 Output conductance : 20 mS/mm Maximum drain current : 750 mA/mm Ft= 160GHz ,Fmax= 350GHz

3.Overcome method each key issue 2.Material Growth part (Epitaxy design) 2) Use of suitable M-buffer layer (Epi growth) –G.Borghs group, 1999 GaAs Mantech 1> ternary buffer (InAlAs) – General grading 2> quaternary buffer (AlGaAsSb)- Top of buffer ( lattice-matching InAlAs ) - low defect density quaternary buffer (AlGaAsSb) Gm=800ms/mm, Ids~500mA Ft=87GHz Fmax=140GHz ternary buffer (InAlAs) Gm=860ms/mm, Ids~450mA Ft=75GHz Fmax=115GHz

4.Conclusion 1.경제적인 소자 2.목적에 따른 소자 연구가능& application 다양 (high speed MHEMT, power MHEMT, ..)  Power HEMT 에 집중하는 것이 효과적. 3. Process-고려 해야 할 변수가 많다. 기준에 따른 최적화 (trade off) (Idss & BVgd , ..) 4. Epitaxy- 최적화를 위한 Epi design (buffer, channel ,Ns..)

Referance 1. 0.13 μm gate-length In0.52Al0.48As-In0.53Ga0.47 As metamorphic HEMTs on GaAs substrate- Dumka, D.C ,Device Research Conference, 2000. Conference Digest 2. 0.1um gate metamorphic HEMT on GaAs and its application to SCFL- Tomoyuki . JJAP 2003 3. Reliability of metamorphic HEMTs on GaAs substrates-Marsh, P.F , GaAs Reliability Workshop, 2001 4. Status of metamorphic InxAl1-xAs/Inx Ga1-xAs HEMTs- cappy A , Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1999 5. Metamorphic InAlAs/InGaAs HEMTs on GaAs substrates with a novel composite channels design Chertouk, M. Electron Device Letters 1996 6. Fmax of 490 GHz metamorphic In0.52Al0.48 As/In0.53Ga0.47As HEMTs on GaAs substrate- Cappy A . Electronics Letters 2002 7. Properties of metamorphic materials and device structures on GaAs substrates- Hsieh, K.C Molecular Beam Epitaxy International Conference 2002 8. Effect of gate metal on reliability of metamorphic HEMTs- Jantz, W GaAs Reliability Workshop, 2001 9. Metamorphic InAlAs/InGaAs HEMT on GaAs substrate with a novel composite channel design Weimann , Electronics Device Letters 1996 10. 0.15µm In0.4GaAs/In0.4AlAs Metamorphic HEMT’s (M-HEMT’s) Using A Novel Triple Shaped Gate Structure Assisted By PMGI Resist- Kim . GaAs Mantach 2004 …..