Su Houng Lee 1. Statistical vs Coalescence model for hadron/nuclei yield 2. Few random comments with Bag model and multiquark 3. Multiquark states from Heavy Ion Collisions 4. May be p-A in LHC Hadron Production in Heavy Ion Collisions 1
2 I: Statistical vs Coalescence model for Hadron production in Heavy Ion Collision Understanding yields of light nuclei
3 u d c d u c u p C a c d b G a/p G b/ dd D C/c X Hadron production in ( p+ C+X ) collision
4 T>Tc T=Tc 1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout Hadronization and freezeout in Heavy Ion Collision
5 Statistical Model for Hadron Yield in HIC (PB Munzinger, Stachel, Redlich) Freezeout points
6 Quark number scaling of v2 P T dependence of ratio v4 Ko et al d u d u u s d c d u u d s c c c d u M Coalescence model
7 RHIC Statistical Model for light Nuclei RHIC/STAR antimatter
8 LHC Statistical Model for light Nuclei
9 T>Tc T=Tc 1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout S/N is conserved (Siemens, Kapusta 79) Hadronic phase and Deuteron formation in Heavy Ion Collision
10 Deuteron production (from ExHIC PRL, PRC papers) T H (175 MeV)T F (125 MeV)
11 Hadronization and freeze out in Heavy Ion Collision T>Tc T=Tc 1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout S/N is conserved (Siemens, Kapusta 79)
12 Deuteron production at RHIC(prameters from ExHIC papers) T H (175 MeV)T F (125 MeV) V (fm 3 ) V ( p) 3N DeuteronTriton N stat (T H ) N coal (T F )
13 II: Few random comments with Bag model Yield of Multiquark configurations
Normal meson TetraquarkMolecule Geometrical configuration Flavor quantum number ud 14 uu u d u d u u u d Normal meson, Tetraquark and Molecule Navara, Nielsen, SHLee Phys Rept (11)
15 Naïve Bag Model for Multiquark states uu u d u d
16 Suppression of p-wave resonance (Muller and Kadana En’yo) Coalescence model = Statistical model + overlap Success of Coalescence model Coalescence model : for things with structures d u d u u s d c d u u d s c c c d u p-wave s-wave d u d u
17 d u d u u s d s d d d u d u u s d s u u u d u s Tetraquark configuration [overlap]<<1 Molecular configuration: [overlap]=1 d Normal meson [overlap]=1 d d u Hadron production through coalescence u d uu u d u u u d u d d u d
18 S. Cho et al PRL x Stat 5 x Stat Fachini [STAR]
19 IV: Heavy Exotics from Heavy Ion Collision
20 large number of c, b quark production Vertex detector: weakly decaying exotics : FAIR 10 4 D 0 /month, LHC 10 5 D 0 /month New perspective of Hadron Physics from Heavy Ion Collision T cc /D > 0.34 x RHIC > 0.8 x LHC T cc production
21 Expectations [overlap] at LHC
22 ExHIC (2011): multiquark/molecule candidates -decay modes
23 ExHIC (2011): multiquark/molecule candidates - yield
24 IV: High multiplicty p-A from heavy ion collision
25 From MinJung Kweon, Inha Univ.
26 D meson yield from p-Pb by ALICE RHICLHCLHC (p-Pb) N u =N d V H (fm 3 ) C.M.Ko private communication
27 2.Production rates from Heavy Ion collisions can be used to distinguish mulitquark from usual and molecular configuration: f0 can not be a pure multiquark configuration 3. Heavy multiquark states + Exotics can be observed at LHC Summary 4. May be high multiplicity p-A reaction can be useful to reduce background 1. Yields of light nuclei can be understood from conservation of S/N