Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.

Slides:



Advertisements
Similar presentations
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Advertisements

Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay review
Neutrino masses Determination of absolute mass scale with beta decays:
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Contents Lecture 1 General introduction What is measured in DBD ? Neutrino oscillations and DBD Other BSM physics and DBD Nuclear matrix elements Lecture.
Double Beta Decay Present and Future
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Reactor neutrinos, double beta and beta decays Experimental review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU) and Centre.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
SuperNEMO collaboration
The COBRA Experiment: Future Prospects
Experiments on Neutrino Nature and Mass
Double Beta Decay - status and future
Status of 100Mo based DBD experiment
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Double beta decay and Majorana neutrinos
Neutrinoless Double Beta Decay Experiments and
of double beta decay experiments (outside of Japan)
• • • Ge measurements for SuperNEMO
Double Beta experiment using nuclear emulsions?
Double Beta experiment with emulsions?
Presentation transcript:

Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW 2010, Outline:  Physics of double beta decay  Latest results from NEMO-3 experiment  Status of the SuperNEMO project  Summary of world status in the field  Conclusion

Double beta decay basic statements (A,Z)  (A,Z+2) + 2e (A,Z)  (A,Z+2) + 2e -  2 : allowed SM process, T 1/2 ~ y  0 : beyond the SM, T 1/2  y Other scenarios (Majoron emission, Right- handed (V+A) current, SUSY, etc.) are possible Light neutrino exchange Experimental patterns (E 1 +E 2 )/Q 

where: T   : half-life of the process : effective neutrino Majorana mass M   : Nuclear matrix element (NME) G   : phase space factor Double beta decay basic formulas THEORY where: M : source mass ε : efficiency W : molecular weight t : time of measurement a : Isotope abundance or enrichment N BGR : background events ΔE: energy resolution EXPERIMENT

 and neutrino fundamental properties Probe of neutrino nature. Neutrinos are Majorana fermions (particle  antiparticle) if  0 takes place  See-Saw mechanism, Leptogenesis, Baryon asymmetry, CP violation Neutrino mass hierarchy.  0 measurements might help to establish the right one. Absolute mass scale.  0 experiments are among the most sensitive ones. Spreads are due to variations of unknown CP phases

Experimental techniques to observe  -decay  -daughter rate E1+E2 spectrum E1, E2,  Larger mass Better resolution High (~ 100%) efficiency Real  -observation. Any  -source can be measured Potentially zero-background Test of  mechanisms There is no “ideal” method to meet all requirements! Geochemical & Radiochemical Calorimetric Source  detector Tracking + Calorimetric TPC Time Projection Chamber

Claim of  observation 4.2  evidence of  in 76 Ge(Q  =2039 keV) has been claimed by Klapdor-Kleingrothaus group (KGC) analyzing data of Heidelberg-Moscow (HM) experiment: Exposure: 71 kg  y ( ) T 1/2  =1.5  y = eV A.M. Bakalyarov et al. Part. and Nucl., Lett. 125, 21 (2005) The same spectrum from Moscow group of HM data without problematic Det.3,5. 1)KGC has triggered a huge discussion 2) The best answer is the measurement! Check of KGC is now the target for all next generation  projects  ?

NEMO-3/SuperNEMO collaboration Neutrino Ettore Majorana Observatory (Neutrino Experiment on MOlybdenum – historical name) 80 physicists / 30 institutions

3 m 4 m B (25 G) Source : 10 kg of  isotopes cylindrical, S = 20 m 2, 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e. Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gaps between water tanks) Able to identify e , e ,  and  delayed 20 sectors

NEMO3 unique features Multi-source detector Measurement of full  -event pattern Self-determination of ALL background components measuring independent channels Multisource  -detector

Unique spectra from tracko-calo technique 100 Mo  2 Results NEMO-3 ’’  -factory’’ in action Sum energy spectrumAngular distributionSingle electron energy spectrum Data - MC ββ2 - background subtracted 100 Mo Latest results: events 389 days S/B= Mo

100 Mo  2 Results Summary of NEMO-3  -results Isotope Expo- sure, days EventsS/B T 1/2 (2νββ), years Published 100 Mo (7.11 ± 0.02(stat)±0.54(syst))·10 18 (SSD favored) 100 Mo(0 + 1 ) ,54 ( (stat) )±0.8(syst))· Se (9.6± 0.3(stat)±1.0(syst))· Cd (2.8± 0.1(stat)±0.3(syst))· Nd ( (stat)±0.63(syst))·10 18 New preliminary 130 Te (6.9± 0.9(stat)±1.0(syst))· Zr (2.35± 0.14(stat)±0.16(syst))· Ca ( (stat)±0.4(syst))·10 19 Systematic studies of  process provide crucial knowledge for  search!

100 Mo  2 Results  -results Isotope T 1/2 (0νββ) limit, ×10 24 years, eVExperimentYear 76 Ge > 15.7< IGEX Ge HM(KGC) Ge > 15.5< HM(Others) Te >3< CUORICINO Mo >1.1< NEMO-32009

From NEMO to SuperNEMO SUPERNEMO R&D is in progress since 2006 NEMO-3  SuperNEMO 100 Mo, 7kg Isotope, mass 82 Se, kg 208 Tl: < 20  Bq/kg 214 Bi: < 300  Bq/kg Background in  -foil 208 Tl: < 2  Bq/kg 214 Bi: < 10  Bq/kg 8% Efficiency 30% 3 MeV Energy resolution (FWHM) 3 MeV T 1/2 > 2 x y < 0.3 – 0.8 eV Sensitivity T 1/2 > 1-2 x y < 40 – 100 meV NEMO-3 successful experience allows to extrapolate tracko-calo technique on larger mass next generation detector to reach new sensitivity level.

20 modules, each of them hosts: - 5 kg of source foil ( 82 Se, 40mg/cm 2 ) Geiger channels Calorimeter channels: PVT Scintillator + 8’’ PMT SuperNEMO basic design SuperNEMO module SuperNEMO is the favorite project to be hosted in the new LSM laboratory (hall A) planned to be opened at 2013

SuperNEMO demonstrator SuperNEMO demonstrator (first module) being finalizing, which will: 1)Prove the concept 2)Test  at level of KGC 3)Start in 2012 Calorimeter R&D Tracker R&D Low background R&D Simulations Source: 6.3 kg of 82 Se BiPo setup

EXO-200 TPC CUORE Bolometer GERDA HPGe World leading  projects I

Experiment Iso- tope Mass *, kg T 1/ y, 90% CL m, meV MethodStartStatus CUORICINO 130 Te bolometric2002 finished(2008) NEMO Mo Tracko-calo2003 running GERDA, Ph-I 76 Ge HPGe (ion.)2010 construction Ph-II 76 Ge HPGe (ion.)2011 approved CUORE 130 Te bolometric2012 construction EXO Xe Liquid TPC2010 construction SNO+ 150 Nd486.4<100 Liquid Scintillator 2011 construction SuperNEMO 82 Se Tracko-calo2012 Demonstrator MAJORANA 76 Ge28HPGe (ion.)2012 Demonstrator EXO 136 Xe Gas TPC2015 R&D 0nbb experiments overview World leading double beta-decay projects II Others concepts and/or R&D: CANDLES ( 48 Ca), COBRA ( 116 Cd, 130 Te), DCBA ( 150 Nd), CARVEL ( 48 Ca), CAMEO ( 116 Cd), XMASS ( 136 Xe), GEM ( 76 Ge), GSO ( 76 Ge), NEXT ( 136 Xe), MOON ( 100 Mo) * Pure mass of  -isotope. Efficiencies are NOT included.

KGC NEMO 3 CUORICINO, EXO-200 GERDA SuperNEMO CUORE,EXO , 1t experiments (1 or 2) >2020, >10t experiment Roadmap for double beta-decay projects

- The 0  decay is a test of physics beyond the Standard Model, fundamental neutrino properties: nature, absolute mass scale and neutrino hierarchy. - NEMO-3 detector is very efficient “  -factory”, which is producing world leading results in the  -field. - SuperNEMO R&D program has confirmed that NEMO-3 technique can be successfully extrapolated to 100 kg experiment with sensitivity compatible with other world leading projects. -SuperNEMO team is finalizing the design of SuperNEMO Demonstrator (first module) which will prove the workability of technique and check KGC. The Demonstrator will be started in Positive signal from 2-3 experiments with different sources and different techniques would be guaranteed confirmation of the existence of  -process. - Only tracko-calo and gas TPC can directly register  -decay. In the case of discovery only direct methods will allow to determine the process leading to  : light neutrino exchange, right-handed current, supersymmetry, etc. Conclusion