P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, 2009. More on the Preamplifier.

Slides:



Advertisements
Similar presentations
CHAPTER 3: SPECIAL PURPOSE OP-AMP CIRCUITS
Advertisements

Linearized MOSFET Resistors
Department of Information Engineering286 Transistor 3-layers device –npn (more common) –pnp (less common) N P N e b c P N P e b c.
Summer, 2003 Dr. H. Kaufman Consider the inverter shown in the Figure. A capacitor C = 10pF is connected between the output and ground. Let V DD = 5V,
Department of Information Engineering357 Operation amplifier The tail, large impedance gives high CMRR Mirror as active load. High gain Follower as buffer.
Department of Information Engineering357 Feedback Op amp golden rules Approximations: 1.Voltage difference between the two inputs is zero 2.Input draws.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft KIT, Institut für Prozessdatenverarbeitung.
ECE 342 Electronic Circuits 2. MOS Transistors
Design of the Front-end Electronics for the GOSSIPO chip. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the Netherlands CERN, July the 22 th,
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
Differential Amplifiers.  What is a Differential Amplifier ? Some Definitions and Symbols  Differential-mode input voltage, v ID, is the voltage difference.
Differential Preamp Stephen Kaye New Preamp Design Motivation Move preamplifier from controller to the Vacuum Interface Board (VIB) Amplifies.
10/11/2015 Operational Amplifier Characterization Chapter 3.
Module 4 Operational Amplifier
Electronics Principles & Applications Fifth Edition Chapter 6 Introduction to Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
A. Rivetti Gigatracker meeting, dec 2009 Charge measurement with the TDC per pixel architecture A. Rivetti, G. Dellacasa S. Garbolino, F. Marchetto, G.
Gossipo-3: a prototype of a Front-end Pixel Chip for Read-out of Micro-Pattern Gas Detectors. TWEPP-09, Paris, France. September 22, Christoph Brezina.
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
HW #5 7.10, 7.21, 7.71, 7.88 Due Tuesday March 3, 2005.
A view on electronics for the prototype of the GOSSIP detector in 0.13um CMOS Technology. Vladimir Gromov Electronics Technology NIKHEF, Amsterdam, the.
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori.
FPGA-Based System Design: Chapter 2 Copyright  2004 Prentice Hall PTR Topics n Logic gate delay. n Logic gate power consumption. n Driving large loads.
Electronics Principles & Applications Fifth Edition Chapter 7 More About Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
1 Operational Amplifiers 1. 2 Outlines Ideal & Non-ideal OP Amplifier Inverting Configuration Non-inverting Configuration Difference Amplifiers Effect.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
2. CMOS Op-amp설계 (1).
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
First measurements of the Gossipo-3 CERN, Geneve March 24, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
Module 2 Operational Amplifier Basics
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Working Group February 03, Local Oscillator in the GOSSIPO-3 readout chip.
P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting May 25, Layout of the Front-end.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 17, Specification of the On-pixel LDO for powering of the local oscillators.
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
MOS Capacitor Lecture #5. Transistor Voltage controlled switch or amplifier : control the output by the input to achieve switch or amplifier Two types.
The Devices: MOS Transistor
TYPES OF COUPLING IN AMPLIFIER
AIDA design review 31 July 2008 Davide Braga Steve Thomas
CHARGE AND LOAD PROTECTION IN SOLAR POWER MANAGEMENT
MOSFET The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device which is widely used for switching and amplifying.
Floating-Gate Devices / Circuits
Calorimeter Mu2e Development electronics Front-end Review
EMT 112 / 4 ANALOGUE ELECTRONICS
UNIT-5 Design of CMOS Op Amps.
Recall Lecture 17 MOSFET DC Analysis
Basic Amplifiers and Differential Amplifier
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
MOS Field-Effect Transistors (MOSFETs)
741 Op-Amp Where we are going:.
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Qualitative Discussion of MOS Transistors
The MOS Transistors, n-well
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
EMT 182 Analog Electronics I
SOLAR POWER CHARGE CONTROLLER
Lecture #17 (cont’d from #16)
Stefano Zucca, Lodovico Ratti
Presentation transcript:

P. Name Nikhef Amsterdam Electronics- Technology Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 31, More on the Preamplifier

P. Name Nikhef Amsterdam Electronics- Technology Preamplifier: DC feedback I in (t), Qin Output charging discharging Input Id gds Id gds int. impedance Uout - Uin 0 0 No signal : Uout = Uin - Id=0 - 1/gds=30MΩ (input bias & stability) Small signal : Uout – Uin < 70mV - 0< Id< Isat (triode region) - 1/gds ≈ 30MΩ Isat Large signal : Uout – Uin > 70mV - Id ≈ Isat (saturation region) - gds → 0 Time 0 Cfb =1fF Uin Uin + 70mV Uin + Qin / Cfb (max 500mV) -Time ● Isat/Cfb exp[-Time/(Cfb/gds)] ToT=350ns (max) → 1fF●500mV / 350ns = Isat ≈ 1nA 1 / 30MΩ GOSSIPO-3 Meeting 24/03/2009 V. Gromov 2

P. Name Nikhef Amsterdam Electronics- Technology Discharging: large signal (saturation) region discharging charging Cfb =1fF Io=6nA lvtpfet 2.4u/2.4u lvtpfet 0.24u/2.4u 226mV Csd =0.2fF 226mV 207mV I discharge ≈ 1nA → weak inversion region (Vgs<< Vthr) β→min (W/L→min) Id= 2●n●μ hole ●Cox ●( W/L )●U T 2 ● exp[(Ugs- Uthr)/(n●U T ) ] ● [1- exp( - Uds / U T )] ≈1.25 ≈4.5 ●10 10 μm 2 /(V ●sec) =ε●εo/d= 4.5pF/m /2.2nm = 2fF/ μm 2 =kT/e ≈ 26mV (at 300°C) ≈ 108mV ≈1.25 =kT/e ≈ 26mV (at 300°C) →0 (Ugs →0) →1 in saturation when: Uds >> UT - assume: L=0.24μ & W=2.4μ → Csd ≈ 0.2fF << Cfb=1fF - assume: Large signal region Uds > 70mV (saturation) required: Id ≈ 1nA → Ugs ≈ 18mV << Uthr=108mV !!! For obtaining 1nA current the adjacent transistor should have higher W/L ratio. This let us use the larger reference current (6nA) which is easier to generate. In addition it improves statistical spread (see later). Sufficient headroom for a real current source →1nA GOSSIPO-3 Meeting 24/03/2009 V. Gromov 3

P. Name Nikhef Amsterdam Electronics- Technology Discharging: small signal (triode or linear) region discharging charging Cfb =1fF Io=6nA lvtpfet 2.4u/2.4u lvtpfet 0.24u/2.4u 226mV Csd =0.2fF 226mV 207mV Sufficient headroom for a real current source Id= 2●n●μ hole ●Cox ●( W/L )●U T 2 ● exp[(Ugs- Uthr)/(n●U T ) ] ● [1- exp( - Uds / U T )] gds=1/Ron= d(Id)/d(Uds)= = 2●n●μ hole ●Cox ●( W/L )●U T ● exp[(Ugs- Uthr)/(n●U T ) ] ● exp( - Uds / U T ) →0 in triode region when: Uds <<U T →1 in triode region when: Uds <<U T - assume: L=0.24μ & W=2.4μ → Csd ≈ 0.2fF << Cfb=1fF - assume: Small signal region Uds << 70mV (triode) -assume Ugs ≈ 18mV << Uthr=108mV ↓ Ron ≈ 30MΩ !!! Low threshold PFET’s are to be used in order to provide sufficient headroom for the biasing current source: Uds curr.source = Ugs NFET – Ugs LVTPFET !!! Isolation of the transistors (current leakage) ≈ 226mV ≈ 18mV ≈ 207mV GOSSIPO-3 Meeting 24/03/2009 V. Gromov 4

P. Name Nikhef Amsterdam Electronics- Technology Discharging: simulation results Vdd_ana Input stage 5/ nA Ub 0.32/1.2 Ron = 30MΩ 0.24/2.4 Ub2 U out To Comp 1.2/ nA 70 nA 2/ / / /2.4 Preamp_in 1fF C par ≈ 3 fF 6 nA Voltage follower DC feedback Gnd_ana gm=23u C*=4.5f lvtpfet’s saturation triode I discharge ≈1nA Ron≈30MΩ 20% of the charge flows into Csd(T fb ) T fb Idrain (T fb ) Csd(T fb ) ≈ 0.2fF GOSSIPO-3 Meeting 24/03/2009 V. Gromov 5

P. Name Nikhef Amsterdam Electronics- Technology Signals 1 ● 430e - = 430e - 2 ● 430e - = 860e - 4 ● 430e - = 1720e - 8 ● 430e - = 3440e - 16 ● 430e - = 6880e - 32 ● 430e - = 13760e - 64 ● 430e - = 27520e - Time-over threshold threshold ToT=0…3us Qin, e - Amp, mV ToT, ns !!! ToT stays linear up to e - But it requires ToT dynamic range 0 … 2.2μsec GOSSIPO-3 Meeting 24/03/2009 V. Gromov 6 Output charging discharging Uin (226mV) Cfb =1fF Cpar =10fF discharging Id =1nA ∆t max ≈ Uin●Cpar / Id = 0.22V●10fF/1nA = = 2.2μsec (22 000e - ) ∆t max =2.2μsec Q max = e - Uin < 0 Uin =226mV 0<Uin<226mV

P. Name Nikhef Amsterdam Electronics- Technology Channel-to-channel statistical spread Id sat = 2●n●β●U T 2 ● exp[(Ugs- Uthr)/(n●U T ) ] d(Id sat )/dβ = Id sat /β → σ{∆(Id sat )/Id sat }=σ{∆β/β} = 1.82% / √(W ● L ) d(Id sat )/dUthr = Id sat / (n●U T )] → σ{∆(Id sat )/Id sat } = σ{∆ Uthr / n●U T } = 2.86mV/[30mV ● √(W ● L )]= 9.5% / √(W ● L ) = 12% !!! Statistical spread ~ 1 / √(W ● L ). By making the feedback transistor larger we improve matching but increase Csd → gain degradation threshold GOSSIPO-3 Meeting 24/03/2009 V. Gromov 7 =2.4μm =0.24μm 500ns ± 200ns (40% or 3 ●σ{∆(Id sat )/Id sat } ? ? → A β [% / μm] → A Vthr [mV / μm]

P. Name Nikhef Amsterdam Electronics- Technology GOSSIPO-3 Meeting 24/03/2009 V. Gromov 8 Vdd_ana Input stage 5/ nA Ub 0.32/1.2 Ron = 30MΩ 0.48/2.4 Ub2 U out 30fF To Comp 1.2/ nA 70 nA 2/ / / /2.4 Preamp_in C par ≈ 3 fF 6 nA Voltage follower DC feedback Gnd_ana gm=23u C*=4.5f T fb Csd+Csg+Csb+Csj ≈ 1.3fF lpnfet A new schematic saturation triode I discharge (external) <<1 nA → internal T fb discharging Ron≈30MΩ 80% of the charge flows into T fb Idrain (T fb ) Modifications : - larger feedback PFET : W=0.48u L=2.4u (should improve mismatch) - feedback PFET’s are standard not lvtpfet - no fringe metal-to-metal capacitor (1fF) - input transistor is LPNFET (high threshold transistor).

P. Name Nikhef Amsterdam Electronics- Technology threshold 130ns ± 30ns (20% ) A new schematic : simulations results Channel-to-channel statistical spread GOSSIPO-3 Meeting 24/03/2009 V. Gromov 9

P. Name Nikhef Amsterdam Electronics- Technology A new schematic : simulations results. Time-over threshold Output charging discharging Uin (520mV) Cfb =1.3fF Cpar =10fF discharging Id =1nA ∆t max ≈ Uin●Cpar / Id = 0.520V●10fF/1nA = 5.2μsec (30 000e - ) Signals 1● 430e - = 430e - 2● 430e - = 860e - 4● 430e - = 1720e - 8● 430e - = 3440e - 16● 430e - = 6880e - 32● 430e - = 13760e - 64● 430e - = 27520e - Qin, e - ToT, ns ∆t max =4μsec Q max = e - Uin =520mV 0<Uin<520mV dU/dt = Id/Cfb ≈1nA/1fA = 1mV/ns ↓ σ(Noise jitter) = σ(Uout noise )/ [dU/dt] ↓ 5 ● σ(Noise jitter) = 27ns (200 e - ) threshold =5.4mV =1mV/ns =5.4ns ≈ 25ns (one bin of the ToT counter) Resolution or Time jitter caused by noise 0.13ns / e - Uout,mV Uin,mV =40 e - GOSSIPO-3 Meeting 24/03/2009 V. Gromov 10

P. Name Nikhef Amsterdam Electronics- Technology A new schematic : simulations results. Time-over threshold Vdd_ana 5/ nA Ub 0.32/1.2 Ron = 30MΩ 0.48/2.4 Ub2 U out To Comp 1.2/ nA 70 nA 2/ / / /2.4 Preamp_in C par ≈ 3 fF 6 nA Gnd_ana gm=23u C*=4.5f T fb Csd+Csg+Csb+Csj ≈ 1.3fF lpnfet Id 1) Sensitivity to the bias discharge current ∆(ToT) / ToT = ∆Id / Id !!! Instability of Id << 40% (stat. spread) 2) Sensitivity to the temperature change ∆(ToT) / ToT = -2%/10°C !!! Low sensitivity 3) Sensitivity to the power supply voltage instability Qin<3500 e - : ∆(ToT) / ToT ≈ 0 Qin>3500 e - : ∆(ToT) / ToT ≈ -2%/100mV !!! Low sensitivity GOSSIPO-3 Meeting 24/03/2009 V. Gromov 11

P. Name Nikhef Amsterdam Electronics- Technology U THR_pixel Cfb =1.3fF A new schematic : coupling to the comparator Comparator MIMcap C AC =200fF NFET 0.48/2.4 NFET 1.92/2.4 Id=2 nA Vdd_ana U THR_common U out_preamp U in_com U out_preamp U in_com Umax ∆U = Id ● ToT / C AC << Umax 0<ToT<4us = 300mV = 0.7nA = 4μs = 0.2pF 16mV charging !!! To avoid signal distortion : C AC ↑ & Id↓ discharging GOSSIPO-3 Meeting 24/03/2009 V. Gromov 12

P. Name Nikhef Amsterdam Electronics- Technology Non-standard FET’s – free Preamp Modifications : - all NFET’s are in floating P-wells (triple-well NFET) - input NFET’s are placed into the P-well biased to + 0.2V - no LPNEFT’s or LVTPFET’s are in the circuit - all transistors in the circuit are standard. P-sub (0V) N-well (+1.2V) P-well_A (+0.2V) P-well_C (Uout_preamp) P-well_D (0V) P-well_E(0V) Preamp_in Preamp_out OPAMP DC-feedback Protection GOSSIPO-3 Meeting 14/04/2009 V. Gromov 13

P. Name Nikhef Amsterdam Electronics- Technology Non-standard FET’s – free Preamp Monte-Carlo simulations threshold 130ns ± 30ns (20% ) DC(U preamp_in )= DC(U preamp_out )= U P-well_A+ Ugs = +0.2V+0.23V= 0.43V U preamp_out GOSSIPO-3 Meeting 14/04/2009 V. Gromov 14

P. Name Nikhef Amsterdam Electronics- Technology C SP =20fF SiProt InGrid Q dis = U HV ●C SP = 8pC U HV = - 400V Preamp Discharge: size of the signal GOSSIPO-3 Meeting 14/04/2009 V. Gromov 15

P. Name Nikhef Amsterdam Electronics- Technology n+n+ n+n+ P-well Discharge protection: Q dis = 8pC In_preamp GND Standard NFET of small area (W=1μm, L=0.24 μm) U In_preamp No protection With protection ← -1V (no damage of the MOSFET’s) ← -7.5V (the MOSFET’s will be damaged) QinU In_preamp I MOS_channel I diode 0.8pC-0.554V100%0% 2pC-0.841V95%5% 4pC-0.931V55%45% 8pC-0.983V30%70% 16pC-1.07V15%85% I MOS_channel p+p+ GND I diode place the bulk contacts as close as possible to the In_preamp terminal in order to avoid effect of the serial resistance of the bulk volume. n-type inversion layer GOSSIPO-3 Meeting 14/04/2009 V. Gromov 16

P. Name Nikhef Amsterdam Electronics- Technology n+n+ p+p+ n+n+ P-well Discharge protection I leak =10pA…250pA (mismatch+process) ↓ U out_preamp = Rfb ● I leak = 30MΩ ● 250pA=7.5mV (worst case) ← negligible Small area :W=1μm, L=0.24 μm ↓ C par = Cds+Cdb+Cdg+Cdj = 1.28fF ← negligible In_preamp (Udc=+0.424V ) GND Standard NFET of small area (W=1μm, L=0.24 μm) I leak C par GOSSIPO-3 Meeting 14/04/2009 V. Gromov 17

P. Name Nikhef Amsterdam Electronics- Technology